Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thickness control of organic semiconductor-incorporated perovskites

Abstract

Two-dimensional organic semiconductor-incorporated perovskites are a promising family of hybrid materials for optoelectronic applications, owing in part to their inherent quantum well architecture. Tuning their structures and properties for specific properties, however, has remained challenging. Here we report a general method to tune the dimensionality of phase-pure organic semiconductor-incorporated perovskite single crystals during their synthesis, by judicious choice of solvent. The length of the conjugated semiconducting organic cations and the dimensionality (n value) of the inorganic layers can be manipulated at the same time. The energy band offsets and exciton dynamics at the organic–inorganic interfaces can therefore be precisely controlled. Furthermore, we show that longer and more planar π-conjugated organic cations induce a more rigid inorganic crystal lattice, which leads to suppressed exciton–phonon interactions and better optoelectronic properties as compared to conventional two-dimensional perovskites. As a demonstration, optically driven lasing behaviour with substantially lower lasing thresholds was realized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure characterizations of 2D OSiPs incorporating 2T, 3T and 4Tm organic cations.
Fig. 2: DFT-calculated electronic structures and band alignments of 2D OSiPs.
Fig. 3: Optical images and spectroscopic studies of mechanically exfoliated 2D OSiP single crystals.
Fig. 4: Quantification of crystal rigidity and exciton–phonon interactions.
Fig. 5: Lasing properties of rigidified OSiP crystal lattices.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC 2151387 ((2T)2(MA)Pb2I7), CCDC 2151388 ((2T)2(MA)2Pb3I10), CCDC 2151389 ((3T)2PbI4), CCDC 2151390 ((3T)2(MA)Pb2I7), CCDC 2151391 ((4Tm)2(MA)Pb2I7) and CCDC 2191050 ((3T)2(MA)2Pb3I10). Crystallographic data can be obtained free of charge through https://www.ccdc.cam.ac.uk/structures/. All the input and output files relevant to the theoretical simulations in this work have been deposited to NOMAD; access the following for more information: https://doi.org/10.17172/NOMAD/2023.03.18-1. All other data are available in the manuscript or Supplementary Information. All materials are available upon request to L.D. Source data are provided with this paper.

References

  1. Ishihara, T., Takahashi, J. & Goto, T. Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun. 69, 933–936 (1989).

    Article  CAS  Google Scholar 

  2. Katan, C., Mercier, N. & Even, J. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119, 3140–3192 (2019).

    Article  PubMed  CAS  Google Scholar 

  3. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–317 (2016).

    Article  PubMed  CAS  Google Scholar 

  4. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article  CAS  Google Scholar 

  5. Zhang, Q., Chu, L., Zhou, F., Ji, W. & Eda, G. Excitonic properties of chemically synthesized 2D organic–inorganic hybrid perovskite nanosheets. Adv. Mater. 30, 1704055 (2018).

    Article  Google Scholar 

  6. Blancon, J., Even, J., Stoumpos, C. C., Kanatzidis, M. G. & Mohite, A. D. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020).

    Article  PubMed  CAS  Google Scholar 

  7. Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    Article  PubMed  CAS  Google Scholar 

  8. Mitzi, D. B. Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc. Dalt. Trans. https://doi.org/10.1039/b007070j (2001).

  9. Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    Article  PubMed  CAS  Google Scholar 

  10. Leng, K., Fu, W., Liu, Y., Chhowalla, M. & Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020).

    Article  CAS  Google Scholar 

  11. Shi, E. et al. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 47, 6046–6072 (2018).

    Article  PubMed  CAS  Google Scholar 

  12. Ricciardulli, A. G., Yang, S., Smet, J. H. & Saliba, M. Emerging perovskite monolayers. Nat. Mater. 20, 1325–1336 (2021).

    Article  PubMed  CAS  Google Scholar 

  13. Hu, J., Yan, L. & You, W. Two-dimensional organic-inorganic hybrid perovskites: a new platform for optoelectronic applications. Adv. Mater. 30, 1802041 (2018).

    Article  Google Scholar 

  14. Raghavan, C. M. et al. Low-threshold lasing from 2D homologous organic–inorganic hybrid Ruddlesden–Popper perovskite single crystals. Nano Lett. 18, 3221–3228 (2018).

    Article  PubMed  CAS  Google Scholar 

  15. Zhang, H. et al. 2D Ruddlesden–Popper perovskites microring laser array. Adv. Mater. 30, 1706186 (2018).

    Article  Google Scholar 

  16. Zhang, F. et al. Enhanced charge transport in 2D perovskites via fluorination of organic cation. J. Am. Chem. Soc. 141, 5972–5979 (2019).

    Article  PubMed  CAS  Google Scholar 

  17. Xiao, X. et al. Ultrafast exciton transport with a long diffusion length in layered perovskites with organic cation functionalization. Adv. Mater. 32, 2004080 (2020).

    Article  CAS  Google Scholar 

  18. Gao, Y. & Dou, L. Organic semiconductor-incorporated two-dimensional halide perovskites. Natl Sci. Rev. 9, nwab111 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chondroudis, K. & Mitzi, D. B. Electroluminescence from an organic–inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem. Mater. 11, 3028–3030 (1999).

    Article  CAS  Google Scholar 

  20. Mitzi, D. B., Chondroudis, K. & Kagan, C. R. Design, structure, and optical properties of organic–inorganic perovskites containing an oligothiophene chromophore. Inorg. Chem. 38, 6246–6256 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. Takeoka, Y., Asai, K., Rikukawa, M. & Sanui, K. Incorporation of conjugated polydiacetylene systems into organic–inorganic quantum-well structures. Chem. Commun. 1, 2592–2593 (2001).

    Article  Google Scholar 

  22. Mao, L. et al. Seven-layered 2D hybrid lead iodide perovskites. Chem 5, 2593–2604 (2019).

    Article  CAS  Google Scholar 

  23. Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    Article  CAS  Google Scholar 

  24. Oswald, I. W. H., Koegel, A. A. & Neilson, J. R. General synthesis principles for Ruddlesden–Popper hybrid perovskite halides from a dynamic equilibrium. Chem. Mater. 30, 8606–8614 (2018).

    Article  CAS  Google Scholar 

  25. Snyder, L. R. Classification off the solvent properties of common liquids. J. Chromatogr. Sci. 16, 223–234 (1978).

    Article  CAS  Google Scholar 

  26. Mao, L. et al. Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018).

    Article  PubMed  CAS  Google Scholar 

  27. Mitzi, D. B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 8, 791–800 (1996).

    Article  CAS  Google Scholar 

  28. Du, K. Z. et al. Two-dimensional lead(II) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity. Inorg. Chem. 56, 9291–9302 (2017).

    Article  PubMed  CAS  Google Scholar 

  29. Dunlap-Shohl, W. A. et al. Tunable internal quantum well alignment in rationally designed oligomer-based perovskite films deposited by resonant infrared matrix-assisted pulsed laser evaporation. Mater. Horizons 6, 1707–1716 (2019).

    Article  CAS  Google Scholar 

  30. Silver, S., Dai, Q., Li, H., Brédas, J. L. & Kahn, A. Quantum well energetics of an n = 2 Ruddlesden–Popper phase perovskite. Adv. Energy Mater. 9, 1901005 (2019).

    Article  Google Scholar 

  31. Ammirati, G. et al. Band structure and exciton dynamics in Quasi-2D dodecylammonium halide perovskites. Adv. Opt. Mater. 11, 2201874 (2023).

    Article  CAS  Google Scholar 

  32. Steger, M. et al. On the optical anisotropy in 2D metal-halide perovskites. Nanoscale 14, 752–765 (2022).

    Article  PubMed  CAS  Google Scholar 

  33. Janke, S. M., Qarai, M. B., Blum, V. & Spano, F. C. Frenkel–Holstein Hamiltonian applied to absorption spectra of quaterthiophene-based 2D hybrid organic-inorganic perovskites. J. Chem. Phys. 152, 144702 (2020).

    Article  PubMed  CAS  Google Scholar 

  34. Gao, Y. et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    Article  PubMed  CAS  Google Scholar 

  35. Liu, C. et al. Tunable semiconductors: control over carrier states and excitations in layered hybrid organic–inorganic perovskites. Phys. Rev. Lett. 121, 146401 (2018).

    Article  PubMed  CAS  Google Scholar 

  36. Jana, M. K. et al. Resolving rotational stacking disorder and electronic level alignment in a 2D oligothiophene-based lead iodide perovskite. Chem. Mater. 31, 8523–8532 (2019).

    Article  CAS  Google Scholar 

  37. Deng, S. et al. Long-lived charge separation in two-dimensional ligand-perovskite heterostructures. J. Chem. Phys. 152, 044711 (2020).

    Article  PubMed  CAS  Google Scholar 

  38. Wang, S. et al. Temperature-dependent band gap in two-dimensional perovskites: thermal expansion interaction and electron–phonon interaction. J. Phys. Chem. Lett. 10, 2546–2553 (2019).

    Article  PubMed  CAS  Google Scholar 

  39. Yu, C. et al. Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3. J. Appl. Phys. 110, 063526 (2011).

  40. Gong, X. et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).

    Article  PubMed  CAS  Google Scholar 

  41. Trueblood, K. N. et al. Atomic displacement parameter nomenclature report of a subcommittee on atomic displacement parameter nomenclature. Acta Crystallogr. A Found. Crystallogr. 52, 770–781 (1996).

    Article  Google Scholar 

  42. Dhanabalan, B. et al. Directional anisotropy of the vibrational modes in 2D-layered perovskites. ACS Nano 14, 4689–4697 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Quan, L. N. et al. Vibrational relaxation dynamics in layered perovskite quantum wells. Proc. Natl Acad. Sci. USA 118, e2104425118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Menahem, M. et al. Strongly anharmonic octahedral tilting in two-dimensional hybrid halide perovskites. ACS Nano 15, 10153–10162 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Barman, S., Venkataraman, N. V., Vasudevan, S. & Seshadri, R. Phase transitions in the anchored organic bilayers of long-chain alkylammonium lead iodides (CnH2n+1NH3)2PbI4; n = 12, 16, 18. J. Phys. Chem. B 107, 1875–1883 (2003).

    Article  CAS  Google Scholar 

  46. Tu, Q. et al. Out-of-plane mechanical properties of 2D hybrid organic–inorganic perovskites by nanoindentation. ACS Appl. Mater. Interfaces 10, 22167–22173 (2018).

    Article  PubMed  CAS  Google Scholar 

  47. Du, Q. et al. Stacking effects on electron–phonon coupling in layered hybrid perovskites via microstrain manipulation. ACS Nano 14, 5806–5817 (2020).

    Article  PubMed  CAS  Google Scholar 

  48. Lee, J., Koteles, E. S. & Vassell, M. O. Luminescence linewidths of excitons in GaAs quantum wells below 150 K. Phys. Rev. A 33, 5512–5516 (1986).

    CAS  Google Scholar 

  49. Handa, T., Aharen, T., Wakamiya, A. & Kanemitsu, Y. Radiative recombination and electron-phonon coupling in lead-free CH3NH3SnI3 perovskite thin films. Phys. Rev. Mater. 2, 075402 (2018).

    Article  CAS  Google Scholar 

  50. Ni, L. et al. Real-time observation of exciton–phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano 11, 10834–10843 (2017).

    Article  PubMed  CAS  Google Scholar 

  51. Chen, Z. et al. Remote phononic effects in epitaxial Ruddlesden–Popper halide perovskites. J. Phys. Chem. Lett. 9, 6676–6682 (2018).

    Article  PubMed  CAS  Google Scholar 

  52. Straus, D. B. et al. Direct observation of electron–phonon coupling and slow vibrational relaxation in organic–inorganic hybrid perovskites. J. Am. Chem. Soc. 138, 13798–13801 (2016).

    Article  PubMed  CAS  Google Scholar 

  53. Guo, P. et al. Cross-plane coherent acoustic phonons in two-dimensional organic–inorganic hybrid perovskites. Nat. Commun. 9, 2019 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Maity, P. et al. Layer-dependent coherent acoustic phonons in two-dimensional Ruddlesden–Popper perovskite crystals. J. Phys. Chem. Lett. 10, 5259–5264 (2019).

    Article  PubMed  CAS  Google Scholar 

  55. Long, H. et al. Exciton–phonon interaction in quasi-two dimensional layered (PEA)2(CsPbBr3)n–1PbBr4 perovskite. Nanoscale 11, 21867–21871 (2019).

    Article  PubMed  CAS  Google Scholar 

  56. Liang, Y. et al. Lasing from mechanically exfoliated 2D homologous Ruddlesden–Popper perovskite engineered by inorganic layer thickness. Adv. Mater. 31, 1903030 (2019).

    Article  Google Scholar 

  57. Guthrie, D. A. & Tovar, J. D. Conformation as a protecting group: a regioselective aromatic bromination en route to complex π-electron systems. Org. Lett. 10, 4323–4326 (2008).

    Article  PubMed  CAS  Google Scholar 

  58. Balandier, J. Y. et al. Synthesis of soluble oligothiophenes bearing cyano groups, their optical and electrochemical properties. Tetrahedron 66, 9560–9572 (2010).

    Article  CAS  Google Scholar 

  59. Harvey, C. P. & Tovar, J. D. Pi-conjugated chain extenders for the synthesis of optoelectronic segmented polyurethanes. J. Polym. Sci. A Polym. Chem. 49, 4861–4874 (2011).

    Article  CAS  Google Scholar 

  60. Wang, X. X. et al.Dipyrido[3,2-a:2′,3′-c]phenazine-based donor–acceptor aromatic heterocyclic compounds with thienyl and triphenylamino chromophores at the 2,7- and/or 10,13-positions. Chem. Asian J. 9, 514–525 (2014).

    Article  PubMed  CAS  Google Scholar 

  61. Keller, N. et al. Oligothiophene-bridged conjugated covalent organic frameworks. J. Am. Chem. Soc. 139, 8194–8199 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Deng, S. et al. Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nat. Commun. 11, 664 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wang, K. et al. Lead-free organic-perovskite hybrid quantum wells for highly stable light-emitting diodes. ACS Nano 15, 6316–6325 (2021).

    Article  PubMed  CAS  Google Scholar 

  64. Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).

    Article  CAS  Google Scholar 

  65. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  PubMed  CAS  Google Scholar 

  66. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 6–9 (2009).

    Article  Google Scholar 

  67. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  68. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” [Journal of Chemical Physics (2003) 118 (8207)]. J. Chem. Phys. 124, 219906 (2006).

    Article  Google Scholar 

  69. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

    Article  PubMed  Google Scholar 

  70. Huhn, W. P. & Blum, V. One-hundred-three compound band-structure benchmark of post-self-consistent spin–orbit coupling treatments in density functional theory. Phys. Rev. Mater. 1, 033803 (2017).

    Article  Google Scholar 

  71. Kim, S. et al. A band-gap database for semiconducting inorganic materials calculated with hybrid functional. Sci. Data 7, 387 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Mitzi and M. K. Jana for help with single-crystal X-ray diffraction studies. We also thank K. Zhao and X. Wang at the School of Mechanical Engineering, Purdue University for the nanoindentation experiments. The work of J.Y.P. and L.D. is supported by the National Science Foundation under award no. 2110706-DMR (crystal synthesis). The work of L.J. and L.H. is supported by the US Department of Energy, Office of Basic Energy Sciences under award no. DE-SC0022082 (spectroscopy characterization). The work of R.S. and V.B. is supported by the National Science Foundation under award no. DMR-1729297 (DFT calculations). The work of J.L. and Y.S.Z. is supported by the New Cornerstone Science Foundation through the Xplorer Prize. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231. The single-crystal X-ray diffractometer was purchased with support from the National Science Foundation under award no. CHE 1625543. This research used resources of the Advanced Light Source, which is a US Department of Energy Office of Science User Facility, under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

J.Y.P. carried out the synthesis, characterization of the materials and overall data analysis. R.S. and V.B. performed the DFT simulations. J.L. and Y.S.Z. characterized the temperature-dependent lasing properties of the materials. L.J. and L.H. carried out the temperature-dependent ultrafast spectroscopy measurements. K.W. provided insight regarding characterization and overall data analysis. E.S. and Y.G. contributed to the synthesis of materials. M.Z. and S.J.T. performed the single-crystal structure determinations. S.L. and P.G. carried out the low-frequency Raman scattering measurements. J.Y.P. and L.D. wrote the manuscript; all authors read and revised the manuscript. L.D. supervised the project.

Corresponding authors

Correspondence to Libai Huang, Yong Sheng Zhao, Volker Blum or Letian Dou.

Ethics declarations

Competing interests

V.B. is a member of the executive board of MS1P e.V., the non-profit organization that licences the FHI-aims electronic structure code used in this work. V.B. does not receive any financial gains from this position. L.D. and Y.G. are inventors of a patent application (US10618889B2, active) related to the molecular design of the organic cations and the synthesis of the hybrid crystals presented in this work. All other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Qing Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–36, Tables 1–10, references and appendix.

Reporting Summary

Supplementary Data 1

Crystal structure for 2T n = 2.

Supplementary Data 2

Crystal structure for 2T n = 3.

Supplementary Data 3

Crystal structure for 3T n = 1.

Supplementary Data 4

Crystal structure for 3T n = 2.

Supplementary Data 5

Crystal structure for 3T n = 3.

Supplementary Data 6

Crystal structure for 4Tm n = 2.

Supplementary Data 7

Graph source data for Supplementary Fig. 11.

Supplementary Data 8

Graph source data for Supplementary Fig. 12.

Supplementary Data 9

Graph source data for Supplementary Fig. 29.

Supplementary Data 10

Graph source data for Supplementary Fig. 30.

Supplementary Data 11

Graph source data for Supplementary Fig. 31.

Supplementary Data 12

Graph source data for Supplementary Fig. 32.

Supplementary Data 13

Graph source data for Supplementary Fig. 33.

Supplementary Data 14

Graph source data for Supplementary Fig. 34.

Supplementary Data 15

Graph source data for Supplementary Fig. 35.

Source data

Source Data Fig. 1

Graph source data.

Source Data Fig. 4

Graph source data.

Source Data Fig. 5

Graph source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.Y., Song, R., Liang, J. et al. Thickness control of organic semiconductor-incorporated perovskites. Nat. Chem. 15, 1745–1753 (2023). https://doi.org/10.1038/s41557-023-01311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01311-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing