Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination

Abstract

Photoredox catalysis, especially in combination with transition metal catalysis, can produce redox states of transition metal catalysts to facilitate challenging bond formations that are not readily accessible in conventional redox catalysis. For arene functionalization, metallophotoredox catalysis has successfully made use of the same leaving groups as those valuable in conventional cross-coupling catalysis, such as bromide. Yet the redox potentials of common photoredox catalysts are not sufficient to reduce most aryl bromides, so synthetically useful aryl radicals are often not directly available. Therefore, the development of a distinct leaving group more appropriately matched in redox potential could enable new reactivity manifolds for metallophotoredox catalysis, especially if arylcopper(iii) complexes are accessible, from which the most challenging bond-forming reactions can occur. Here we show the conceptual advantages of aryl thianthrenium salts for metallophotoredox catalysis, and their utility in site-selective late-stage aromatic fluorination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metallophotoredox-catalysis-enabled functionalization of arenes.
Fig. 2: Mechanism.
Fig. 3: Mechanism experiments.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 1900278 (4), 1900279 (25-TT), 1900280 (40-TT), 1900276 (41-TT) and 1900277 (43-TT) (Supplementary Figs. 4246). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data that support the findings of this study are available within the article and its Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  2. Tellis, J. C. et al. Single-electron transmetalation via photoredox/nickel dual catalysis: unlocking a new paradigm for sp3sp2 cross-coupling. Acc. Chem. Res. 49, 1429–1439 (2016).

    Article  CAS  Google Scholar 

  3. Ghosh, I., Marzo, L., Das, A., Shaikh, R. & König, B. Visible light mediated photoredox catalytic arylation reactions. Acc. Chem. Res. 49, 1566–1577 (2016).

    Article  CAS  Google Scholar 

  4. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article  CAS  Google Scholar 

  5. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014).

    Article  CAS  Google Scholar 

  6. Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).

    Article  CAS  Google Scholar 

  7. Stache, E. E., Rovis, T. & Doyle, A. G. Dual nickel- and photoredox-catalyzed enantioselective desymmetrization of cyclic meso-anhydrides. Angew. Chem. Int. Ed. 56, 3679–3683 (2017).

    Article  CAS  Google Scholar 

  8. Corcoran, E. B. et al. Aryl amination using ligand-free Ni(ii) salts and photoredox catalysis. Science 353, 279–283 (2016).

    Article  CAS  Google Scholar 

  9. Terrett, J. A., Cuthbertson, J. D., Shurtleff, V. W. & MacMillan, D. W. C. Switching on elusive organometallic mechanisms with photoredox catalysis. Nature 524, 330–334 (2015).

    Article  CAS  Google Scholar 

  10. Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K. & MacMillan, D. W. C. Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(ii). Science 355, 380–385 (2017).

    Article  CAS  Google Scholar 

  11. Lee, E., Hooker, J. M. & Ritter, T. Nickel-mediated oxidative fluorination for PET with aqueous [18F] fluoride. J. Am. Chem. Soc. 134, 17456–17458 (2012).

    Article  CAS  Google Scholar 

  12. Ribas, X. & Casitas, A. in Ideas in Chemistry and Molecular Sciences: Where Chemistry Meets Life (ed. B. Pignataro) 31−57 (Wiley-VCH, 2010).

  13. Casitas, A., Canta, M., Solà, M., Costas, M. & Ribas, X. Nucleophilic aryl fluorination and aryl halide exchange mediated by a Cui/Cuiii catalytic cycle. J. Am. Chem. Soc. 133, 19386–19392 (2011).

    Article  CAS  Google Scholar 

  14. Le, C., Chen, T. Q., Liang, T., Zhang, P. & MacMillan, D. W. C. A radical approach to the copper oxidative addition problem: trifluoromethylation of bromoarenes. Science 360, 1010–1014 (2018).

    Article  CAS  Google Scholar 

  15. Ghosh, I., Ghosh, T., Bardagi, J. & König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725–728 (2014).

    Article  CAS  Google Scholar 

  16. Ghosh, I. & König, B. Chromoselective photocatalysis: controlled bond activation through light-color regulation of redox potentials. Angew. Chem. Int. Ed. 55, 7676–7679 (2016).

    Article  CAS  Google Scholar 

  17. Nguyen, J. D., D'Amato, E. M., Narayanam, J. M. R. & Stephenson, C. R. J. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions. Nat. Chem. 4, 854–859 (2012).

    Article  CAS  Google Scholar 

  18. Costentin, C., Robert, M. & Savéant, J. M. Fragmentation of aryl halide π anion radicals. Bending of the cleaving bond and activation vs driving force relationships. J. Am. Chem. Soc 126, 16051–16057 (2004).

    Article  CAS  Google Scholar 

  19. Yang, S., Chen, M. & Tang, P. Visible‐light photoredox‐catalyzed and copper‐promoted trifluoromethoxylation of arenediazonium tetrafluoroborates. Angew. Chem. Int. Ed. 58, 7840–7844 (2019).

    Article  CAS  Google Scholar 

  20. Ichiishi, N., Canty, A. J., Yates, B. F. & Sanford, M. S. Cu-catalyzed fluorination of diaryliodonium salts with KF. Org. Lett. 15, 5134–5137 (2013).

    Article  CAS  Google Scholar 

  21. Berger, F. et al. Site-selective and versatile aromatic C−H functionalization by thianthrenation. Nature 567, 223–228 (2019).

    Article  CAS  Google Scholar 

  22. Ye, F. et al. Aryl sulfonium salts for site-selective late-stage trifluoromethylation. Angew. Chem. Int. Ed. 58, 14615–14619 (2019).

    Article  CAS  Google Scholar 

  23. Engl, P. S. et al. C–N cross-couplings for site-selective late-stage diversification via aryl sulfonium salts. J. Am. Chem. Soc. 141, 13346–13351 (2019).

    Article  CAS  Google Scholar 

  24. Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(iii) complex. Chem. Mater. 17, 5712–5719 (2005).

    Article  CAS  Google Scholar 

  25. Hammerich, O. & Parker, V. D. The reversible oxidation of aromatic cation radicals to dications. Solvents of low nucleophilicity. Electrochim. Acta 18, 537–541 (1973).

    Article  CAS  Google Scholar 

  26. Rupp, H., Verplaetse, J. & Lontie, R. Binuclear copper electron paramagnetic resonance signals of α-methemocyanin of helix pomatia. Z. Naturforsch. 35 c, 188–192 (1980).

    Article  Google Scholar 

  27. Andrieux, C. P., Savéant, J.-M., Tallec, A., Tardivel, R. & Tardy, C. Concerted and stepwise dissociative electron transfers. Oxidability of the leaving group and strength of the breaking bond as mechanism and reactivity governing factors illustrated by the electrochemical reduction of α-substituted acetophenones. J. Am. Chem. Soc. 119, 2420–2429 (1997).

    Article  CAS  Google Scholar 

  28. Kampmeier, J. A. et al. Regioselectivity in the reductive bond cleavage of diarylalkylsulfonium salts: variation with driving force and structure of sulfuranyl radical intermediates. J. Am. Chem. Soc. 131, 10015–10022 (2009).

    Article  CAS  Google Scholar 

  29. Laage, D., Burghardt, I., Sommerfeld, T. & Hynes, J. T. On the dissociation of aromatic radical anions in solution. 1. Formulation and application to p-cyanochlorobenzene radical anion. J. Phys. Chem. A 107, 11271–11291 (2003).

    Article  CAS  Google Scholar 

  30. Burghardt, I., Laage, D. & Hynes, J. T. On the dissociation of aromatic radical anions in solution. 2. Reaction path and rate constant analysis. J. Phys. Chem. A 107, 11292–11306 (2003).

    Article  CAS  Google Scholar 

  31. Laage, D., Burghardt, I., Sommerfeld, T. & Hynes, J. T. On the dissociation of aromatic radical anions in solution. ChemPhysChem 4, 61–66 (2003).

    Article  CAS  Google Scholar 

  32. Fier, P. S., Luo, J. & Hartwig, J. F. Copper-mediated fluorination of arylboronate esters. Identification of a copper(iii) fluoride complex. J. Am. Chem. Soc. 135, 2552–2559 (2013).

    Article  CAS  Google Scholar 

  33. Ye, Y. & Sanford, M. S. Mild copper-mediated fluorination of aryl stannanes and aryl trifluoroborates. J. Am. Chem. Soc. 135, 4648–4651 (2013).

    Article  CAS  Google Scholar 

  34. Ye, Y., Schimler, S. D., Hanley, P. S. & Sanford, M. S. Cu(OTf)2-mediated fluorination of aryltrifluoroborates with potassium fluoride. J. Am. Chem. Soc. 135, 16292–16295 (2013).

    Article  CAS  Google Scholar 

  35. Watson, D. A. et al. Formation of ArF from LPdAr(F): catalytic conversion of aryl triflates to aryl fluorides. Science 325, 1661–1664 (2009).

    Article  CAS  Google Scholar 

  36. Yamamoto, K. et al. Palladium-catalysed electrophilic aromatic C–H fluorination. Nature 554, 511–514 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Costentin (Université Paris VII) for helpful discussions on the electrochemical analysis. We thank O. Rüdiger (MPI CEC) for providing the electrochemical set-up and for helpful discussions, S. Marcus and D. Kampen (MPI KOFO) for mass spectrometry analysis and A. Dreier and J. Rust (MPI KOFO) for the crystal structure analysis.

Author information

Authors and Affiliations

Authors

Contributions

J.L., J.C. and R.S. developed the fluorination reaction. W.-S.H., M.B.P, J.L., J.C., F.B., S.C., A.S. and C.G. contributed to the mechanistic studies. F.B. initiated the approach to the project. All the authors wrote the manuscript. T.R. directed the project.

Corresponding author

Correspondence to Tobias Ritter.

Ethics declarations

Competing interests

A patent application (German patent number EP18204755.5), dealing with the use of TT and its derivatives for C–H functionalization has been filed, and F.B. and T.R. may benefit from royalty payments.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Experimental procedures, product characterization, X-ray crystallographic analysis and mechanistic studies.

Crystallographic data

Crystallographic data for compound 25-TT. CCDC reference 1900279

Crystallographic data

Crystallographic data for compound 4. CCDC reference 1900278

Crystallographic data

Crystallographic data for compound 41-TT. CCDC reference 1900276

Crystallographic data

Crystallographic data for compound 43-TT. CCDC reference 1900277

Crystallographic data

Crystallographic data for compound 40-TT. CCDC reference 1900280

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, J., Sang, R. et al. Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination. Nat. Chem. 12, 56–62 (2020). https://doi.org/10.1038/s41557-019-0353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0353-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing