Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases

Abstract

Strategies that provide enzymes with the ability to catalyse non-natural reactions are of considerable synthetic value. Photoredox catalysis has proved adept at expanding the synthetic repertoire of existing catalytic platforms, yet, in the realm of biocatalysis it has primarily been used for cofactor regeneration. Here we show that photoredox catalysts can be used to enable new catalytic function in nicotinamide-dependent enzymes. Under visible-light irradiation, xanthene-based photocatalysts enable a double-bond reductase to catalyse an enantioselective deacetoxylation. Mechanistic experiments support the intermediacy of an α-acyl radical, formed after the elimination of acetate. Isotopic labelling experiments support nicotinamide as the source of the hydrogen atom. Preliminary calculations and mechanistic experiments suggest that binding to the protein attenuates the reduction potential of the starting material, an important feature for localizing radical formation to the enzyme active site. The generality of this approach is highlighted with the radical dehalogenation of α-bromoamides catalysed by ketoreductases with Eosin Y as a photocatalyst.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The interface of photoredox and enzyme catalysis.
Fig. 2: Proposed mechanism for the deacetoxylation of ketones using a DBR in concert with photoredox catalysis.
Fig. 3: Experimental support for the reaction mechanism.

Similar content being viewed by others

References

  1. Liang, J. et al. Highly enantioselective reduction of a small heterocyclic ketone: biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-alcohol. Org. Process Res. Dev. 14, 188–192 (2010).

    Article  CAS  Google Scholar 

  2. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Lin, C.-I., McCarty, R. M. & Liu, H.-W. The enzymology of organic transformations: a survey of name reactions in biological systems. Angew. Chem. Int. Ed. 56, 3446–3489 (2017).

    Article  CAS  Google Scholar 

  4. Brandenberg, O. F., Fasan, R. & Arnold, F. H. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions. Curr. Opin. Biotechnol. 47, 102–111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Prier, C. K. & Arnold, F. H. Chemomimetic biocatalysis: exploiting the synthetic potential of cofactor-dependent enzymes to create new catalysts. J. Am. Chem. Soc. 137, 13992–14006 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Bornscheuer, U. T. & Kazlauskas, R. J. Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways. Angew. Chem. Int. Ed. 43, 6032–6040 (2004).

    Article  CAS  Google Scholar 

  8. Humble, M. S. & Berglund, P. Biocatalytic promiscuity. Eur. J. Org. Chem. 2011, 3391–3401 (2011).

    Article  CAS  Google Scholar 

  9. Sibi, M. P., Manyem, S. & Zimmerman, J. Enantioselective radical processes. Chem. Rev. 103, 3263–3296 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Meggers, E. Asymmetric catalysis activated by visible light. Chem. Commun. 51, 3290–3301 (2015).

    Article  CAS  Google Scholar 

  11. Yoon, T. P. Photochemical stereocontrol using tandem photoredox–chiral Lewis acid catalysis. Acc. Chem. Res. 49, 2307–2315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, L. & Meggers, E. Steering asymmetric Lewis acid catalysis exclusively with octahedral metal-centered chirality. Acc. Chem. Res. 50, 320–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nicewicz, D. A. & MacMillan, D. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rono, L. J., Yayla, H. G., Wang, D. Y., Armstrong, M. F. & Knowles, R. R. Enantioselective photoredox catalysis enabled by proton-coupled electron transfer: development of an asymmetric aza-pinacol cyclization. J. Am. Chem. Soc. 135, 17735–17738 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Du, J., Skubi, K. L., Schultz, D. M. & Yoon, T. P. A dual-catalysis approach to enantioselective [2+2] photocycloadditions using visible light. Science 344, 392–396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Uraguchi, D., Kinoshita, N., Kizu, T. & Ooi, T. Synergistic catalysis of ionic Brønsted acid and photosensitizer for a redox neutral asymmetric α-coupling of N-arylaminomethanes with aldimines. J. Am. Chem. Soc. 137, 13768–13771 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Sandoval, B. A., Meichan, A. J. & Hyster, T. K. Enantioselective hydrogen atom transfer: discovery of catalytic promiscuity in flavin-dependent ‘ene’-reductases. J. Am. Chem. Soc. 139, 11313–11316 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28, 25–35 (1999).

    Article  CAS  Google Scholar 

  22. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maciá-Agulló, J. A., Corma, A. & Garcia, H. Photobiocatalysis: the power of combining photocatalysis and enzymes. Chem. Eur. J. 21, 10940–10959 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Hollmann, F., Taglieber, A., Schulz, F. & Reetz, M. T. A light-driven stereoselective biocatalytic oxidation. Angew. Chem. Int. Ed. 46, 2903–2906 (2007).

    Article  CAS  Google Scholar 

  26. Lee, S. H. et al. Cofactor-free, direct photoactivation of enoate reductases for the asymmetric reduction of C=C bonds. Angew. Chem. Int. Ed. 56, 8581–8685 (2017).

    Google Scholar 

  27. Mifsud, M. et al. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat. Commun. 5, 3145 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Park, J. H. et al. Cofactor-free light-driven whole-cell cytochrome P450 catalysis. Angew. Chem. Int. Ed. 54, 969–973 (2014).

    Article  CAS  Google Scholar 

  29. Tran, N.-H. et al. An efficient light-driven P450 BM3 biocatalyst. J. Am. Chem. Soc. 135, 14484–14487 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brown, K. A., Wilker, M. B., Boehm, M., Dukovic, G. & King, P. W. Characterization of photochemical processes for H2 production by CdS nanorod–[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 134, 5627–5636 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Onoda, A., Kihara, Y., Fukumoto, K., Sano, Y. & Hayashi, T. Photoinduced hydrogen evolution catalyzed by a synthetic diiron dithiolate complex embedded within a protein matrix. ACS Catal. 4, 2645–2648 (2014).

    Article  CAS  Google Scholar 

  32. Brown, K. A. et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science 352, 448–450 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Lazarides, T. et al. Visible light-driven O2 reduction by a porphyrin–laccase system. J. Am. Chem. Soc. 135, 3095–3103 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Gu, Y., Ellis-Guardiola, K., Srivastava, P. & Lewis, J. C. Preparation, characterization, and oxygenase activity of a photocatalytic artificial enzyme. ChemBioChem 16, 1880–1883 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Farrell, P. A., Walsh, M. A., McCarthy, A. A. & Higgins, T. M. Modulation of the redox potentials of FMN in Desulfovibrio vulgaris flavodoxin: thermodynamic properties and crystal structures of glycine-61 mutants. Biochemistry 37, 8405–8416 (1998).

    Article  PubMed  Google Scholar 

  36. Olea, C. Jr, Kuriyan, J. & Marletta, M. A. Modulating heme redox potential through protein-induced porphyrin distortion. J. Am. Chem. Soc. 132, 12794–12795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, F., Fan, W. & Wise, G. E. Eosin Y staining of proteins in polyacrylamide gels. Anal. Biochem. 196, 279–283 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Y. & Görner, H. Photoprocesses of xanthene dyes bound to lysozyme or serum albumin. Photochem. Photobiol. 85, 677–685 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Banerjee, A., Lee, K., Yu, Q., Fang, A. G. & Falvey, D. E. Protecting group release through photoinduced electron transfer: wavelength control through sensitized irradiation. Tetrahedron Lett. 39, 4635–4638 (1998).

    Article  CAS  Google Scholar 

  40. Monos, T. M., Magallanes, G., Sebren, L. J. & Stephenson, C. R. J. Visible light mediated reductions of ethers, amines and sulfides. J. Photochem. Photobiol. A 328, 240–248 (2016).

    Article  CAS  Google Scholar 

  41. Tarantino, K. T., Liu, P. & Knowles, R. R. Catalytic ketyl–olefin cyclizations enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 135, 10022–10025 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Huang, M. et al. Carbon–carbon double-bond reductases in nature. Drug Metab. Rev. 46, 362–378 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Youn, B. et al. Mechanistic and structural studies of apoform, binary, and ternary complexes of the arabidopsis alkenal double bond reductase At5g16970. J. Biol. Chem. 281, 40076–40088 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Mohr, J. T., Hong, A. Y. & Stoltz, B. M. Enantioselective protonation. Nat. Chem. 1, 359–369 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mansell, D. J. et al. Biocatalytic asymmetric alkene reduction: crystal structure and characterization of a double bond reductase from Nicotiana tabacum. ACS Catal. 3, 370–379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lambert, C. R. & Kochevar, I. E. Electron transfer quenching of the Rose Bengal triplet state. Photochem. Photobiol. 66, 15–25 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Tanaka, M., Ohkubo, K. & Fukuzumi, S. DNA cleavage by UVA irradiation of NADH with dioxygen via radical chain processes. J. Phys. Chem. A 110, 11214–11218 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Yayla, H. G. et al. Discovery and mechanistic study of a photocatalytic indoline dehydrogenation for the synthesis of elbasvir. Chem. Sci. 7, 2066–2073 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Princeton University and a Searle Scholar Award (SSP-2017-1741) to T.K.H. We thank the MacMillan group for use of their Chiral HPLC and CV equipment. We thank C. Leahy for assistance in protein expression and purification.

Author information

Authors and Affiliations

Authors

Contributions

K.F.B. and S.J.C. contributed equally. K.F.B., S.J.C., M.A.E. and T.K.H. designed the experiments. K.F.B., S.J.C. and M.A.E. performed and analysed experiments. D.C.M. conducted the density functional theory calculations. T.K.H. prepared the manuscript with input from all authors.

Corresponding author

Correspondence to Todd K. Hyster.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and Procedures, Supplementary Sequence Information, Supplementary Data and Supplementary Figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biegasiewicz, K.F., Cooper, S.J., Emmanuel, M.A. et al. Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases. Nature Chem 10, 770–775 (2018). https://doi.org/10.1038/s41557-018-0059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0059-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing