Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA

Abstract

To elicit optimal immune responses, messenger RNA vaccines require intracellular delivery of the mRNA and the careful use of adjuvants. Here we report a multiply adjuvanted mRNA vaccine consisting of lipid nanoparticles encapsulating an mRNA-encoded antigen, optimized for efficient mRNA delivery and for the enhanced activation of innate and adaptive responses. We optimized the vaccine by screening a library of 480 biodegradable ionizable lipids with headgroups adjuvanted with cyclic amines and by adjuvanting the mRNA-encoded antigen by fusing it with a natural adjuvant derived from the C3 complement protein. In mice, intramuscular or intranasal administration of nanoparticles with the lead ionizable lipid and with mRNA encoding for the fusion protein (either the spike protein or the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) increased the titres of antibodies against SARS-CoV-2 tenfold with respect to the vaccine encoding for the unadjuvanted antigen. Multiply adjuvanted mRNA vaccines may improve the efficacy, safety and ease of administration of mRNA-based immunization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-throughput synthesis and screening of biodegradable cyclic ionizable lipids synthesized by Ugi-3CR.
Fig. 2: Immunogenicity of immunostimulatory LNPs.
Fig. 3: Immunogenicity study of C3d fusion SARS-CoV-2 mRNA.
Fig. 4: Synergistic effect of immunostimulatory LNPs and C3d fusion mRNA following intramuscular and intranasal administration.
Fig. 5: Comparative analysis of vaccine-induced antibody coverage and FcR binding across SARS-CoV-2 variants of concern.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within this paper and its Supplementary Information. The raw and analysed datasets are too large to readily share publicly yet are available for research purposes from the corresponding author on reasonable request.

References

  1. Corbett, K. S. et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Vogel, A. B. et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 592, 283–289 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buschmann, M. D. et al. Nanomaterial delivery systems for mRNA vaccines. Vaccines 9, 65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kowalski, P. S., Rudra, A., Miao, L. & Anderson, D. G. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27, 710–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patel, A. K. et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31, e1805116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang, N. N. et al. A thermostable mRNA vaccine against COVID-19. Cell 182, 1271–1283 e1216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McKay, P. F. et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titres in mice. Nat. Commun. 11, 3523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pulendran, B., S. Arunachalam, P. & O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454–475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alameh, M.-G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e2877 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Swaminathan, G. et al. A tetravalent sub-unit dengue vaccine formulated with ionizable cationic lipid nanoparticle induces significant immune responses in rodents and non-human primates. Sci. Rep. 6, 34215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Ahn, J. & Barber, G. N. STING signaling and host defense against microbial infection. Exp. Mol. Med. 51, 1–10 (2019).

    Article  PubMed  Google Scholar 

  18. Hassett, K. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Toapanta, F. R. & Ross, T. M. Complement-mediated activation of the adaptive immune responses: role of C3d in linking the innate and adaptive immunity. Immunol. Res. 36, 197–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Bower, J. F. & Ross, T. M. in Current Topics in Complement 249–264 (Springer, 2006).

  23. Rickert, R. C. Regulation of B lymphocyte activation by complement C3 and the B cell coreceptor complex. Curr. Opin. Immunol. 17, 237–243 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Phua, K. K. L., Staats, H. F., Leong, K. W. & Nair, S. K. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci. Rep. 4, 5128 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mai, Y. et al. Intranasal delivery of cationic liposome–protamine complex mRNA vaccine elicits effective anti-tumor immunity. Cell. Immunol. 354, 104143 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Tarke, A. et al. Impact of SARS-CoV-2 variants on the total CD4(+) and CD8(+) T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2, 100355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schulien, I. et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8(+) T cells. Nat. Med. 27, 78–85 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020).

    Article  PubMed  Google Scholar 

  29. Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501 e1415 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peng, Y. et al. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 21, 1336–1345 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oberhardt, V. et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature 597, 268–273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reinscheid, M. et al. COVID-19 mRNA booster vaccine induces transient CD8+ T effector cell responses while conserving the memory pool for subsequent reactivation. Nat. Commun. 13, 4631 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, J. et al. CD8 T cells contribute to vaccine protection against SARS-CoV-2 in macaques. Sci. Immunol. 7, eabq7647 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Tarke, A. et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from alpha to omicron. Cell 185, 847–859 e811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mise-Omata, S. et al. Memory B cells and memory T cells induced by SARS-CoV-2 booster vaccination or infection show different dynamics and responsiveness to the omicron variant. J. Immunol. 209, 2104–2113 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Dhawan, M. et al. Updated insights into the T cell-mediated immune response against SARS-CoV-2: a step towards efficient and reliable vaccines. Vaccines 11, 101 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 23, 186–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Richardson, S. J., Bai, A., Kulkarni, A. A. & Moghaddam, M. F. Efficiency in drug discovery: liver S9 fraction assay as a screen for metabolic stability. Drug Metab. Lett. 10, 83–90 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Li, B., Luo, X. & Dong, Y. Effects of chemically modified messenger RNA on protein expression. Bioconjug. Chem. 27, 849–853 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. vander Straeten, A. et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01774-z (2023).

    Article  PubMed  Google Scholar 

  44. Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Alu, A. et al. Intranasal COVID-19 vaccines: from bench to bed. eBioMedicine 76, 103841 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01679-x (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ndeupen, S. et al. The mRNA–LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 24, 103479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18, 46–61 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zohar, T. et al. Compromised humoral functional evolution tracks with SARS-CoV-2 mortality. Cell 183, 1508–1519.e1512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaplonek, P. et al. Early cross-coronavirus reactive signatures of humoral immunity against COVID-19. Sci. Immunol. 6, eabj2901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaplonek, P. et al. mRNA-1273 vaccine-induced antibodies maintain Fc effector functions across SARS-CoV-2 variants of concern. Immunity 55, 355–365.e354 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harrod, K. et al. The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody. PLoS ONE 16, e0253487 (2021).

    Article  Google Scholar 

  53. Rosenblum, H. G. et al. Safety of mRNA vaccines administered during the initial 6 months of the US COVID-19 vaccination programme: an observational study of reports to the Vaccine Adverse Event Reporting System and v-safe. Lancet Infect. Dis. (2022).

  54. Bastard, P., Zhang, Q., Zhang, S. Y., Jouanguy, E. & Casanova, J. L. Type I interferons and SARS-CoV-2: from cells to organisms. Curr. Opin. Immunol. 74, 172–182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hervas-Stubbs, S. et al. Effects of IFN-alpha as a signal-3 cytokine on human naive and antigen-experienced CD8(+) T cells. Eur. J. Immunol. 40, 3389–3402 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Richner, J. M. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 169, 176 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Xia, S. et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 21, 39–51 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Dempsey, P. W., Allison, M. E. D., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Ross, T. M., Xu, Y., Bright, R. A. & Robinson, H. L. C3d enhancement of antibodies to hemagglutinin accelerates protection against influenza virus challenge. Nat. Immunol. 1, 127–131 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bower, J., Sanders, K. & Ross, T. C3d enhances immune responses using low doses of DNA expressing the HIV-1 envelope from codon-optimized gene sequences. Curr. HIV Res. 3, 191–198 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Green, T. D. et al. C3d enhancement of neutralizing antibodies to measles hemagglutinin. Vaccine 20, 242–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. He, Y. G. et al. A novel C3d-containing oligomeric vaccine provides insight into the viability of testing human C3d-based vaccines in mice. Immunobiology 223, 125–134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, D. et al. Construction and immunogenicity of DNA vaccines encoding fusion protein of murine complement C3d-p28 and GP5 gene of porcine reproductive and respiratory syndrome virus. Vaccine 29, 629–635 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Green, T. D., Montefiori, D. C. & Ross, T. M. Enhancement of antibodies to the human immunodeficiency virus type 1 envelope by using the molecular adjuvant C3d. J. Virol. 77, 2046–2055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Watanabe, I. et al. Protection against influenza virus infection by intranasal administration of C3d-fused hemagglutinin. Vaccine 21, 4532–4538 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Yang, S. et al. Fusion of C3d molecule with neutralization epitope(s) of hepatitis E virus enhances antibody avidity maturation and neutralizing activity following DNA immunization. Virus Res. 151, 162–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, L., Sunyer, J. O. & Bello, L. J. Fusion to C3d enhances the immunogenicity of the E2 glycoprotein of type 2 bovine viral diarrhea virus. J. Virol. 78, 1616–1622 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, Z. et al. Fusion to chicken C3d enhances the immunogenicity of the M2 protein of avian influenza virus. Virol. J. 7, 89 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, Z. et al. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci. Transl. Med. 13, eabf1555 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 13, eabd2223 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Boyaka, P. N. Inducing mucosal IgA: a challenge for vaccine adjuvants and delivery systems. J. Immunol. 199, 9–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Allie, S. R. et al. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol. 20, 97–108 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Morabito, K. M. et al. Memory inflation drives tissue-resident memory CD8+ T cell maintenance in the lung after intranasal vaccination with murine cytomegalovirus. Front. Immunol. 9, 1861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Levin, E. G. et al. Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months. N. Engl. J. Med. 385, e84 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Goldberg, Y. et al. Waning immunity after the BNT162b2 vaccine in Israel. N. Engl. J. Med. 385, e85 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Künzli, M. et al. Route of self-amplifying mRNA vaccination modulates the establishment of pulmonary resident memory CD8 and CD4 T cells. Sci. Immunol. 7, eadd3075 (2022).

    Article  PubMed  Google Scholar 

  78. Vaca, G. B. et al. Intranasal mRNA–LNP vaccination protects hamsters from SARS-CoV-2 infection. Preprint at bioRxiv (2023).

  79. Boudreau, C. M. & Alter, G. Extra-neutralizing FcR-mediated antibody functions for a universal influenza vaccine. Front. Immunol. 10, 440 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Meyer, M. et al. Ebola vaccine-induced protection in nonhuman primates correlates with antibody specificity and Fc-mediated effects. Sci. Transl. Med. 13, eabg6128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Neidich, S. D. et al. Antibody Fc effector functions and IgG3 associate with decreased HIV-1 risk. J. Clin. Invest. 129, 4838–4849 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zohar, T. et al. Upper and lower respiratory tract correlates of protection against respiratory syncytial virus following vaccination of nonhuman primates. Cell Host Microbe 30, 41–52.e45 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Yamin, R. et al. Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy. Nature 599, 465–470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Puntel, M. et al. Identification and visualization of CD8+ T cell mediated IFN-gamma signaling in target cells during an antiviral immune response in the brain. PLoS ONE 6, e23523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, P. S. & Ahmed, R. Features of responding T cells in cancer and chronic infection. Curr. Opin. Immunol. 22, 223–230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blattman, J. N. & Greenberg, P. D. Cancer immunotherapy: a treatment for the masses. Science 305, 200–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Hoft, D. F. et al. Live and inactivated influenza vaccines induce similar humoral responses, but only live vaccines induce diverse T-cell responses in young children. J. Infect. Dis. 204, 845–853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Heyes, J., Palmer, L., Bremner, K. & MacLachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J. Control. Release 107, 276–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Shobaki, N., Sato, Y. & Harashima, H. Mixing lipids to manipulate the ionization status of lipid nanoparticles for specific tissue targeting. Int. J. Nanomed. 13, 8395–8410 (2018).

    Article  CAS  Google Scholar 

  90. Chen, X., Gentili, M., Hacohen, N. & Regev, A. A cell-free nanobody engineering platform rapidly generates SARS-CoV-2 neutralizing nanobodies. Nat. Commun. 12, 5506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) (R61AI161805) and Translate Bio. B.L. was also supported by the Leslie Dan Faculty of Pharmacy startup fund, the Princess Margaret Cancer Centre operating fund, the Connaught Fund (514681), the J. P. Bickell Foundation (515159), the Canada Research Chairs Program (CRC-2022-00575), Canadian Institutes of Health Research (PJH-185722), Natural Sciences and Engineering Research Council of Canada (RGPIN-2023-05124) and the Canada Foundation for Innovation—John R. Evans Leaders Fund (43711). A.Y.J. was also supported by the NIH (UG3HL147367 and UH3HL147367). The Systems Serology Laboratory is supported by the generous gifts of M. and L. Schwartz, T. and S. Ragon and the Samana Kay Research Scholars award. The Systems Serology Lab also receives funding from the Massachusetts Consortium on Pathogen Readiness (MassCPR), the Gates Global Health Vaccine Accelerator Platform and the NIH (1P01AI165072-01, 3R37AI080289-11S1, U19AI42790-01, U19AI135995-02 and U19AI42790-01). T.S. was supported by the Marble Centre for Cancer Nanomedicine. S.B. is a Howard Hughes Medical Institute investigator. J.W. was supported by the Cystic Fibrosis Foundation (WITTEN19XX0) and the NIH (R01 HL162564-02). Y.X. was supported by a Postdoc Fellowship from the PRiME-UHN Clinical Catalyst Program at the University of Toronto. We thank the Koch Institute Swanson Biotechnology Centre for technical support, specifically the Animal Imaging and Preclinical Testing, Flow Cytometry, High Throughput Sciences, Histology and Nanotechnology Materials Core Facilities. We also thank R. Bronson and E. Calle for assistance with the histology, and M. Gentili and N. Hacohen for providing the reagents for the pseudotype neutralization assay. Figures 2a and 4e were created with Biorender.com.

Author information

Authors and Affiliations

Authors

Contributions

B.L. and A.Y.J. conceived the project and wrote the paper, with input from all authors. B.L. and I.R. designed the combinatorial lipid library. B.L., A.Y.J., I.R., C.A, T.M.R., A.G.R.G, L.H.R., T.S., C.M., J.W., H.M., T.M.C., Y.X. and R.P.M. performed experiments and analysed data. B.L., A.Y.J., R.L. and D.G.A. discussed the results and edited the paper. B.L., S.B., G.A., R.L. and D.G.A. acquired funding and supervised the project.

Corresponding author

Correspondence to Daniel G. Anderson.

Ethics declarations

Competing interests

B.L., A.Y.J. and D.G.A. have filed a patent for the use of C3d in mRNA vaccines. D.G.A receives research funding from Sanofi/Translate Bio and is a co-founder of Orna Therapeutics. R.L. co-founded Moderna and serves on its board. He has been an advisor for Hopewell Therapeutics and Combined Therapeutics. For a list of entities with which R.L. is or has been recently involved, compensated or uncompensated, refer to the ‘Competing Interests’ section of the supplementary information (accurate as of July 2023). The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Michael Mitchell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of LNP formulations containing MC3, Lipid 331, ALC-0315 or A18-Iso5-2DC18.

a, Transfection of mFFL LNPs in THP-1 cells (50 ng mRNA per well, n = 3). b, Transfection of mFFL LNPs containing either MC3, Lipid 331, ALC-0315, or A18-Iso5-2DC18 (A18) at the i.m. injection site in mice (0.2 mg/kg mRNA, n = 3 biologically independent mice per group). c. Representative IVIS imaging results from IM injection. d. The abundance of residual ionizable lipids at the injection site three days post-injection (n = 5 mice per group). Statistical significance was analysed using a one-way ANOVA with Dunnett’s correction (a) or one-way ANOVA with post-hoc Tukey test (b) or a two-tailed Student’s t-test (d). Data are presented as mean ± SD.

Extended Data Fig. 2 Characterization of anti-RBDDelta IgG1, IgG2b and IgG2c following the vaccination of RBDDelta, mRNA or RBDDelta/C3d mRNA mixture, or RBDDelta-C3d fusion mRNA.

a, MFIs of IgG subclasses obtained from Luminex assay measuring serological antibody binding against the RBD antigen from the Delta variant of SARS-CoV-2. Data related to Fig. 3i. b, Ratio of IgG2c to IgG1 levels as a surrogate of Th1-Th2 bias. Ratios were calculated as log10(MFIIgG2c)/log10(MFIIgG1). n = 5, statistical significance was analysed using a one-way ANOVA with post-hoc Tukey test. Data are presented as mean ± SD.

Extended Data Fig. 3 Pseudovirus neutralization titers following IM or IN vaccination with MC3 or Lipid 331 LNPs encapsulating either mRBDDelta or mRBDDelta-C3d.

NT50 of sera collected from vaccinated C57BL/6J mice two weeks post (a) IM or (b) IN boost vaccination. Mice were vaccinated with either mRBDDelta in MC3 or Lipid 331 LNPs (MC3 and 331, respectively), mRBDDelta-C3d in MC3 or Lipid 331 LNPs (MC3 + C3d and 331 + C3d, respectively), or PBS. A pseudovirus neutralization assay was used to determine NT50 values. Statistical significance was determined using a Kruskal-Wallis one-way ANOVA. Data are presented as geometric mean titre± geometric SD.

Extended Data Fig. 4 Polar plots of antibody features elicited by IM or IN vaccination with MC3 or Lipid 331 LNPs encapsulating either mRBDDelta or mRBDDelta-C3d.

The polar plots show the mean percentile rank for each antibody feature against RBD from the Delta variant of SARS-CoV-2 in serum collected from mice two weeks post-boost vaccination. Data related to vaccination study in Figs. 4 and 5.

Extended Data Fig. 5 Characterization of anti-RBDDelta antibody subclasses and Fc receptor binding following IM or IN vaccination with MC3 or Lipid 331 LNPs encapsulating either mRBDDelta or mRBDDelta-C3d.

a, MFIs of antibody features obtained from Luminex assay measuring serological antibody binding against the RBD antigen from the Delta variant of SARS-CoV-2. Serum was collected from mice vaccinated with either mRBDDelta in MC3 or Lipid 331 LNPs (MC3 and 331, respectively), mRBDDelta-C3d in MC3 or Lipid 331 LNPs (MC3 + C3d and 331 + C3d, respectively), or PBS. Data related to vaccination study in Fig. 4. b, Ratio of IgG2c to IgG1 levels as a surrogate of Th1-Th2 bias. Ratios were calculated as log10(MFIIgG2c)/log10(MFIIgG1). n = 5, statistical significance was analysed using a one-way ANOVA with post-hoc Tukey test. Data are presented as mean ± SD.

Supplementary information

Supplementary Information

Supplementary methods and figures, and detailed competing interests for R.L.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Jiang, A.Y., Raji, I. et al. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat. Biomed. Eng (2023). https://doi.org/10.1038/s41551-023-01082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-023-01082-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research