Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Restoration of sensory information via bionic hands

Abstract

Individuals who have lost the use of their hands because of amputation or spinal cord injury can use prosthetic hands to restore their independence. A dexterous prosthesis requires the acquisition of control signals that drive the movements of the robotic hand, and the transmission of sensory signals to convey information to the user about the consequences of these movements. In this Review, we describe non-invasive and invasive technologies for conveying artificial sensory feedback through bionic hands, and evaluate the technologies’ long-term prospects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Technologies for restoring sensory feedback via bionic hands.

Image courtesy of Kenzie Green

Fig. 2: Somatotopic mapping following targeted reinnervation.

Image courtesy of Kenzie Green; panels adapted with permission from ref. 28, Foundation of Rehabilitation Information (a) and ref. 42, Elsevier (b)

Fig. 3: Examples of non-invasive stimulation.

Image courtesy of Kenzie Green; panels adapted with permission from ref. 26, IEEE (a) and ref. 56, IEEE (b)

Fig. 4: The somatosensory periphery.

Image courtesy of Kenzie Green

Fig. 5: Electrical interfaces with the peripheral nerves.

Image courtesy of Kenzie Green

Fig. 6: Projected fields for nerve stimulation.

Image courtesy of Kenzie Green; adapted with permission from ref. 18, AAAS

Fig. 7: Electrical interfaces with the central nervous system.

Image courtesy of Kenzie Green; adapted with permission from ref. 146, AAAS

Similar content being viewed by others

References

  1. Bernstein, N. The Co-ordination and Regulation of Movements (Pergamon Press, 1967).

  2. Wyndaele, M. & Wyndaele, J.-J. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 44, 523–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Borton, D., Micera, S., Millán, J. del R. & Courtine, G. Personalized neuroprosthetics. Sci. Transl. Med. 5, 210rv2 (2013).

  4. Abdollahi, F. et al. Body–machine interface enables people with cervical spinal cord injury to control devices with available body movements: proof of concept. Neurorehabil. Neural Repair 31, 487–493 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Saunders, I. & Vijayakumar, S. The role of feed-forward and feedback processes for closed-loop prosthesis control. J. Neuroeng. Rehabil. 8, 60 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Herberts, P. & Körner, L. Ideas on sensory feedback in hand prostheses. Prosthet. Orthot. Int. 3, 157–162 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. Callier, T., Suresh, A. K. & Bensmaia, S. J. Neural coding of contact events in somatosensory cortex. Cereb. Cortex 29, 4613–4627 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Augurelle, A.-S., Smith, A. M., Lejeune, T. & Thonnard, J.-L. Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J. Neurophysiol. 89, 665–671 (2003).

    Article  PubMed  Google Scholar 

  10. Cole, J. Pride and a Daily Marathon (MIT Press, 1995).

  11. Okorokova, E. V., He, Q. & Bensmaia, S. J. Biomimetic encoding model for restoring touch in bionic hands through a nerve interface. J. Neural Eng. 15, 066033 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Delhaye, B. P., Saal, H. P. & Bensmaia, S. J. Key considerations in designing a somatosensory neuroprosthesis. J. Physiol. Paris 110, 402–408 (2016).

    Article  PubMed  Google Scholar 

  13. Bensmaia, S. J. Biological and bionic hands: natural neural coding and artificial perception. Philos. Trans. R. Soc. B 370, 20140209 (2015).

    Article  Google Scholar 

  14. Saal, H. P. & Bensmaia, S. J. Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia 79, 344–353 (2015).

    Article  PubMed  Google Scholar 

  15. Valle, G. et al. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. Neuron 100, 37–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Oddo, C. M. et al. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. eLife 5, e09148 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Graczyk, E. L. et al. The neural basis of perceived intensity in natural and artificial touch. Sci. Transl. Med. 8, 362ra142 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tan, D. W. et al. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6, 257ra138 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wheat, H. E. & Goodwin, A. W. Tactile discrimination of edge shape: limits on spatial resolution imposed by parameters of the peripheral neural population. J. Neurosci. 21, 7751–7763 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weber, A. I. et al. Spatial and temporal codes mediate the tactile perception of natural textures. Proc. Natl Acad. Sci. USA 110, 17107–17112 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korner, L. Afferent electrical nerve stimulation for sensory feedback in hand prostheses: clinical and physiological aspects. Acta Orthop. Scand. 50(Suppl. 178), 1–52 (1979).

    Article  Google Scholar 

  22. Doubler, J. & Childress, D. An analysis of extended physiological proprioception as a prosthesis-control technique. J. Rehabil. Res. Dev. 21, 5–18 (1984).

    CAS  PubMed  Google Scholar 

  23. Scott, R. N., Brittain, R. H., Caldwell, R. R., Cameron, A. B. & Dunfield, V. A. Sensory-feedback system compatible with myoelectric control. Med. Biol. Eng. Comput. 18, 65–69 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. Kaczmarek, K. A., Webster, J. G., Bach-y-Rita, P. & Tompkins, W. J. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans. Biomed. Eng. 38, 1–16 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, D., Xu, H., Shull, P. B., Liu, J. & Zhu, X. Somatotopical feedback versus non-somatotopical feedback for phantom digit sensation on amputees using electrotactile stimulation. J. Neuroeng. Rehabil. 12, 44 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Witteveen, H. J. B., Droog, E. A., Rietman, J. S. & Veltink, P. H. Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Trans. Biomed. Eng. 59, 2219–2226 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Chai, G., Zhang, D. & Zhu, X. Developing non-somatotopic phantom finger sensation to comparable levels of somatotopic sensation through user training with electrotactile stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 469–480 (2017).

    Article  PubMed  Google Scholar 

  28. Björkman, A., Wijk, U., Antfolk, C., Björkman-Burtscher, I. & Rosén, B. Sensory qualities of the phantom hand map in the residual forearm of amputees. J. Rehabil. Med. 48, 365–370 (2016).

    Article  PubMed  Google Scholar 

  29. Dosen, S. et al. Multichannel electrotactile feedback with spatial and mixed coding for closed-loop control of grasping force in hand prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 183–195 (2017).

    Article  PubMed  Google Scholar 

  30. Arakeri, T. J., Hasse, B. A. & Fuglevand, A. J. Object discrimination using electrotactile feedback. J. Neural Eng. 15, 046007 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Forst, J. C. et al. Surface electrical stimulation to evoke referred sensation. J. Rehabil. Res. Dev. 52, 397–406 (2015).

    Article  PubMed  Google Scholar 

  32. D’Anna, E. et al. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci. Rep. 7, 10930 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hao, M. et al. Restoring finger-specific sensory feedback for transradial amputees via non-invasive evoked tactile sensation. IEEE Open J. Eng. Med. Biol. 1, 98–107 (2020).

    Article  PubMed  Google Scholar 

  34. Raspopovic, S. et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222ra19 (2014).

    Article  PubMed  Google Scholar 

  35. Vargas, L., Huang, H., Zhu, Y. & Hu, X. Object shape and surface topology recognition using tactile feedback evoked through transcutaneous nerve stimulation. IEEE Trans. Haptics 13, 152–158 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Osborn, L. E. et al. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci. Robot. 3, eaat3818 (2018).

    Article  Google Scholar 

  37. Akhtar, A., Sombeck, J., Boyce, B. & Bretl, T. Controlling sensation intensity for electrotactile stimulation in human–machine interfaces. Sci. Robot. 3, eaap9770 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dosen, S., Schaeffer, M.-C. & Farina, D. Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback. J. Neuroeng. Rehabil. 11, 138 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Antfolk, C. et al. Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin. J. Rehabil. Med. 44, 702–707 (2012).

    Article  PubMed  Google Scholar 

  40. Wheeler, J., Bark, K., Savall, J. & Cutkosky, M. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 58–66 (2010).

    Article  PubMed  Google Scholar 

  41. Godfrey, S. B., Bianchi, M., Bicchi, A. & Santello, M. Influence of force feedback on grasp force modulation in prosthetic applications: a preliminary study. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 5439–5442 (IEEE, 2016).

  42. Kuiken, T. A. et al. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369, 371–380 (2007).

    Article  PubMed  Google Scholar 

  43. Witteveen, H. J. B., de Rond, L., Rietman, J. S. & Veltink, P. H. Hand-opening feedback for myoelectric forearm prostheses: performance in virtual grasping tasks influenced by different levels of distraction. J. Rehabil. Res. Dev. 49, 1517–1526 (2012).

    Article  PubMed  Google Scholar 

  44. Rosenbaum-Chou, T., Daly, W., Austin, R., Chaubey, P. & Boone, D. Development and real world use of a vibratory haptic feedback system for upper-limb prosthetic users. J. Prosthet. Orthot. 28, 136–144 (2016).

    Article  Google Scholar 

  45. Gathmann, T., Atashzar, S. F., Alva, P. G. S. & Farina, D. Wearable dual-frequency vibrotactile system for restoring force and stiffness perception. IEEE Trans. Haptics 13, 191–196 (2020).

    Article  PubMed  Google Scholar 

  46. Ninu, A. et al. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control? IEEE Trans. Neural Syst. Rehabil. Eng. 22, 1041–1052 (2014).

    Article  PubMed  Google Scholar 

  47. Reza Motamedi, M., Otis, M. & Duchaine, V. The impact of simultaneously applying normal stress and vibrotactile stimulation for feedback of exteroceptive information. J. Biomech. Eng. 139, 061004 (2017).

    Article  Google Scholar 

  48. Edin, B. & Johansson, R. S. Predictive feed-forward sensory control during grasping and manipulation in man. Biomed. Res. 14, 95–106 (1993).

    Google Scholar 

  49. Aboseria, M., Clemente, F., Engels, L. F. & Cipriani, C. Discrete vibro-tactile feedback prevents object slippage in hand prostheses more intuitively than other modalities. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1577–1584 (2018).

    Article  PubMed  Google Scholar 

  50. Cianchetti, M., Laschi, C., Menciassi, A. & Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 3, 143–153 (2018).

    Article  Google Scholar 

  51. Huaroto, J. J., Suarez, E., Krebs, H. I., Marasco, P. D. & Vela, E. A. A soft pneumatic actuator as a haptic wearable device for upper limb amputees: toward a soft robotic liner. IEEE Robot. Autom. Lett. 4, 17–24 (2019).

    Article  Google Scholar 

  52. Sonar, H. A. & Paik, J. Soft pneumatic actuator skin with piezoelectric sensors for vibrotactile feedback. Front. Robot. AI 2, 38 (2016).

    Article  Google Scholar 

  53. Marasco, P. D., Kim, K., Colgate, J. E., Peshkin, M. A. & Kuiken, T. A. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain J. Neurol. 134, 747–758 (2011).

    Article  Google Scholar 

  54. Marasco, P. D. et al. Illusory movement perception improves motor control for prosthetic hands. Sci. Transl. Med. 10, eaao690 (2018).

    Article  Google Scholar 

  55. Tarantino, S., Clemente, F., Barone, D., Controzzi, M. & Cipriani, C. The myokinetic control interface: tracking implanted magnets as a means for prosthetic control. Sci. Rep. 7, 17149 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. D’Alonzo, M., Dosen, S., Cipriani, C. & Farina, D. HyVE: hybrid vibro-electrotactile stimulation for sensory feedback and substitution in rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 290–301 (2014).

    Article  PubMed  Google Scholar 

  57. Johansson, R. S. & Vallbo, A. B. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. 286, 283–300 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bensmaia, S. J. & Horch, K. W. in Neuroprosthetics Vol. 8 (eds Horch, K. & Kipke, D.) 134–152 (World Scientific, 2016).

  59. Ochoa, J. & Torebjörk, E. Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J. Physiol. 342, 633–654 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McGlone, F. & Reilly, D. The cutaneous sensory system. Neurosci. Biobehav. Rev. 34, 148–59 (2010).

    Article  PubMed  Google Scholar 

  61. Lumpkin, E. A. & Caterina, M. J. Mechanisms of sensory transduction in the skin. Nature 445, 858–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Clippinger, F. W., Avery, R. & Titus, B. R. A sensory feedback system for an upper-limb amputation prosthesis. Bull. Prosthet. Res. 10–22, 247–258 (1974).

    Google Scholar 

  63. Clippinger, F. W., Seaber, A. V., McElhaney, J. H., Harrelson, J. M. & Maxwell, G. M. Afferent sensory feedback for lower extremity prosthesis. Clin. Orthop. Relat. Res. 169, 202–206 (1982).

    Article  Google Scholar 

  64. Tan, D., Schiefer, M. A., Keith, M. W., Anderson, R. & Tyler, D. J. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in a human amputee. J. Neural Eng. 12, 026002 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ortiz-Catalan, M., Håkansson, B. & Brånemark, R. An osseointegrated human–machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 6, 257re6 (2014).

    Article  PubMed  Google Scholar 

  66. Farina, D. & Aszmann, O. Bionic limbs: clinical reality and academic promises. Sci. Transl. Med. 6, 257ps12 (2014).

    Article  PubMed  Google Scholar 

  67. Naples, G. G., Mortimer, J. T., Scheiner, A. & Sweeney, J. D. A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans. Biomed. Eng. 35, 905–916 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. Agnew, W. F., McCreery, D. B., Yuen, T. G. H. & Bullara, L. A. Histologic and physiologic evaluation of electrically stimulated peripheral nerve: considerations for the selection of parameters. Ann. Biomed. Eng. 17, 39–60 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Polasek, K. H., Hoyen, H. A., Keith, M. W., Kirsch, R. F. & Tyler, D. J. Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 428–437 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Groves, D. A. & Brown, V. J. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 29, 493–500 (2005).

    Article  PubMed  Google Scholar 

  71. Fisher, L. E., Tyler, D. J., Anderson, J. S. & Triolo, R. J. Chronic stability and selectivity of four-contact spiral nerve-cuff electrodes in stimulating the human femoral nerve. J. Neural Eng. 6, 046010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tyler, D. J. & Durand, D. M. Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 10, 294–303 (2002).

    Article  PubMed  Google Scholar 

  73. Schiefer, M. A., Triolo, R. J. & Tyler, D. J. A model of selective activation of the femoral nerve with a flat interface nerve electrode for a lower extremity neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 195–204 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schiefer, M. A. et al. Selective activation of the human tibial and common peroneal nerves with a flat interface nerve electrode. J. Neural Eng. 10, 056006 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Lawrence, S. M., Dhillon, G. S., Jensen, W., Yoshida, K. & Horch, K. W. Acute peripheral nerve recording characteristics of polymer-based longitudinal intrafascicular electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 345–348 (2004).

    Article  PubMed  Google Scholar 

  76. Yoshida, K. & Horch, K. Selective stimulation of peripheral nerve fibers using dual intrafascicular electrodes. IEEE Trans. Biomed. Eng. 40, 492–494 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Boretius, T. et al. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens. Bioelectron. 26, 62–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Sharma, A. et al. Long term in vitro functional stability and recording longevity of fully integrated wireless neural interfaces based on the Utah Slant Electrode Array. J. Neural Eng. 8, 045004 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cutrone, A. et al. A three-dimensional self-opening intraneural peripheral interface (SELINE). J. Neural Eng. 12, 016016 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Wurth, S. et al. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes. Biomaterials 122, 114–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Petrini, F. M. et al. Six-month assessment of a hand prosthesis with intraneural tactile feedback. Ann. Neurol. 85, 137–154 (2019).

    Article  PubMed  Google Scholar 

  82. Navarro, X. et al. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10, 229–258 (2005).

    Article  PubMed  Google Scholar 

  83. Coker, R. A., Zellmer, E. R. & Moran, D. W. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part B: stimulation. J. Neural Eng. 16, 026002 (2019).

    Article  PubMed  Google Scholar 

  84. Delgado-Martínez, I. et al. Fascicular nerve stimulation and recording using a novel double-aisle regenerative electrode. J. Neural Eng. 14, 046003 (2017).

    Article  PubMed  Google Scholar 

  85. Musick, K. M. et al. Chronic multichannel neural recordings from soft regenerative microchannel electrodes during gait. Sci. Rep. 5, 14363 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chandrasekaran, S. et al. Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees. eLife 9, e54349 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Johansson, R. S. & Birznieks, I. First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat. Neurosci. 7, 170–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Saal, H. P., Delhaye, B. P., Rayhaun, B. C. & Bensmaia, S. J. Simulating tactile signals from the whole hand with millisecond precision. Proc. Natl Acad. Sci. USA 114, E5693–E5702 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jenmalm, P., Birznieks, I., Goodwin, A. & Johansson, R. S. Differential responses in populations of fingertip tactile afferents to objects’ surface curvatures. Acta Physiol. Scand. 167, A24–A25 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Hallin, R. G. & Wu, G. Fitting pieces in the peripheral nerve puzzle. Exp. Neurol. 172, 482–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Wu, G., Ekedahl, R. & Hallin, R. G. Clustering of slowly adapting type II mechanoreceptors in human peripheral nerve and skin. Brain 121, 265–279 (1998).

    Article  PubMed  Google Scholar 

  92. Wu, G. et al. Clustering of Pacinian corpuscle afferent fibres in the human median nerve. Exp. Brain Res. 126, 399–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Campero, M., Serra, J. & Ochoa, J. L. Peripheral projections of sensory fascicles in the human superficial radial nerve. Brain 128, 892–895 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Tompkins, R. P. R., Melling, C. W. J., Wilson, T. D., Bates, B. D. & Shoemaker, J. K. Arrangement of sympathetic fibers within the human common peroneal nerve: implications for microneurography. J. Appl. Physiol. 115, 1553–1561 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hallin, R. G. Microneurography in relation to intraneural topography: somatotopic organisation of median nerve fascicles in humans. J. Neurol. 53, 736–744 (1990).

    CAS  Google Scholar 

  96. Hallin, R. G., Ekedahl, R. & Frank, O. Segregation by modality of myelinated and unmyelinated fibers in human sensory nerve fascicles. Muscle Nerve 14, 157–165 (1991).

    Article  CAS  PubMed  Google Scholar 

  97. Ekedahl, R., Frank, O. & Hallin, R. G. Peripheral afferents with common function cluster in the median nerve and somatotopically innervate the human palm. Brain Res. Bull. 42, 367–376 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Dhillon, G. S. & Horch, K. W. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 468–472 (2005).

    Article  PubMed  Google Scholar 

  99. Makin, T. R. & Bensmaia, S. J. Stability of sensory topographies in adult cortex. Trends Cogn. Sci. 21, 195–204 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ortiz-Catalan, M., Mastinu, E., Sassu, P., Aszmann, O. & Brånemark, R. Self-contained neuromusculoskeletal arm prostheses. N. Engl. J. Med. 382, 1732–1738 (2020).

    Article  PubMed  Google Scholar 

  101. Graczyk, E. L., Resnik, L., Schiefer, M. A., Schmitt, M. S. & Tyler, D. J. Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Sci. Rep. 8, 9866 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ortiz-Catalan, M., Mastinu, E. & Bensmaia, S. Chronic use of a sensitized bionic hand does not remap the sense of touch. Preprint at medXriv https://doi.org/10.1101/2020.05.02.20089185 (2020).

  103. Poulos, D. A. et al. The neural signal for the intensity of a tactile stimulus. J. Neurosci. 4, 2016–2024 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Muniak, M. A., Ray, S., Hsiao, S. S., Dammann, J. F. & Bensmaia, S. J. The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior. J. Neurosci. 27, 11687–11699 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dhillon, G. S., Lawrence, S. M., Hutchinson, D. T. & Horch, K. W. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J. Hand Surg. 29, 605–615 (2004). disc. 616–618.

    Article  Google Scholar 

  106. Valle, G. et al. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. Neuron 100, 37–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Lieber, J. D. & Bensmaia, S. J. High-dimensional representation of texture in somatosensory cortex of primates. Proc. Natl Acad. Sci. USA 116, 3268–3277 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Graczyk, E. L., Christie, B., He, Q., Tyler, D. J. & Bensmaia, S. J. Frequency shapes the quality of tactile percepts evoked through electrical stimulation of the nerves. Preprint at bioRxiv https://doi.org/10.1101/2020.08.24.263822 (2020).

  109. Leung, Y. Y., Bensmaïa, S. J., Hsiao, S. S. & Johnson, K. O. Time-course of vibratory adaptation and recovery in cutaneous mechanoreceptive afferents. J. Neurophysiol. 94, 3037–3045 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Bensmaïa, S. J., Leung, Y. Y., Hsiao, S. S. & Johnson, K. O. Vibratory adaptation of cutaneous mechanoreceptive afferents. J. Neurophysiol. 94, 3023–3036 (2005).

    Article  PubMed  Google Scholar 

  111. Graczyk, E. L., Delhaye, B. P., Schiefer, M. A., Bensmaia, S. J. & Tyler, D. J. Sensory adaptation to electrical stimulation of the somatosensory nerves. J. Neural Eng. 15, 046002 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Valle, G. et al. Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Sci. Rep. 8, 16666 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. George, J. A. et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 4, eaax2352 (2019).

    Article  PubMed  Google Scholar 

  114. Schiefer, M., Tan, D., Sidek, S. M. & Tyler, D. J. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J. Neural Eng. 13, 016001 (2016).

    Article  PubMed  Google Scholar 

  115. Marasco, P. D., Kim, K., Colgate, J. E., Peshkin, M. A. & Kuiken, T. A. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain J. Neurol. 134, 747–758 (2011).

    Article  Google Scholar 

  116. Botvinick, M. & Cohen, J. Rubber hands ‘feel’ touch that eyes see. Nature 391, 756 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Graczyk, E. L., Gill, A., Tyler, D. J. & Resnik, L. J. The benefits of sensation on the experience of a hand: a qualitative case series. PLoS ONE 14, e0211469 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rognini, G. et al. Multisensory bionic limb to achieve prosthesis embodiment and reduce distorted phantom limb perceptions. J. Neurol. Neurosurg. Psychiatry 90, 833–836 (2019).

    Article  PubMed  Google Scholar 

  119. Weeks, S. R., Anderson-Barnes, V. C. & Tsao, J. W. Phantom limb pain: theories and therapies. Neurologist 16, 277–286 (2010).

    Article  PubMed  Google Scholar 

  120. Page, D. M. et al. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front. Hum. Neurosci. 12, 352 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Proske, U. & Gandevia, S. C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Edin, B. B. & Johansson, N. Skin strain patterns provide kinaesthetic information to the human central nervous system. J. Physiol. 487, 243–251 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Macefield, G., Gandevia, S. C. & Burke, D. Perceptual responses to microstimulation of single afferents innervating joints, muscles and skin of the human hand. J. Physiol. 429, 113–129 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schiefer, M. A., Graczyk, E. L., Sidik, S. M., Tan, D. W. & Tyler, D. J. Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks. PLoS ONE 13, e0207659 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wendelken, S. et al. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. J. Neuroeng. Rehabil. 14, 121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. D’Anna, E. et al. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 4, eaau8892 (2019).

    Article  PubMed  Google Scholar 

  127. Suresh, A. K. et al. Methodological considerations for a chronic neural interface with the cuneate nucleus of macaques. J. Neurophysiol. 118, 3271–3281 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Richardson, A. G., Weigand, P. K., Sritharan, S. Y. & Lucas, T. H. A chronic neural interface to the macaque dorsal column nuclei. J. Neurophysiol. 115, 2255–2264 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sritharan, S. Y. et al. Somatosensory encoding with cuneate nucleus microstimulation: detection of artificial stimuli. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 4719–4722 (IEEE, 2016).

  130. Heming, E., Sanden, A. & Kiss, Z. H. T. Designing a somatosensory neural prosthesis: percepts evoked by different patterns of thalamic stimulation. J. Neural Eng. 7, 064001 (2010).

    Article  PubMed  Google Scholar 

  131. Heming, E. A., Choo, R., Davies, J. N. & Kiss, Z. H. T. Designing a thalamic somatosensory neural prosthesis: consistency and persistence of percepts evoked by electrical stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 477–482 (2011).

    Article  PubMed  Google Scholar 

  132. Schmid, A.-C. et al. Neuronal responses to tactile stimuli and tactile sensations evoked by microstimulation in the human thalamic principal somatic sensory nucleus (ventral caudal). J. Neurophysiol. 115, 2421–2433 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Swan, B. D., Gasperson, L. B., Krucoff, M. O., Grill, W. M. & Turner, D. A. Sensory percepts induced by microwire array and DBS microstimulation in human sensory thalamus. Brain Stimulat. 11, 416–422 (2018).

    Article  Google Scholar 

  134. Delhaye, B. P., Long, K. H. & Bensmaia, S. J. Neural basis of touch and proprioception in primate cortex. Compr. Physiol. 8, 1575–1602 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pei, Y.-C. & Bensmaia, S. J. The neural basis of tactile motion perception. J. Neurophysiol. 112, 3023–3032 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Pons, T. P., Garraghty, P. E., Cusick, C. G. & Kaas, J. H. The somatotopic organization of area 2 in macaque monkeys. J. Comp. Neurol. 241, 445–466 (1985).

    Article  CAS  PubMed  Google Scholar 

  137. Sanchez-Panchuelo, R. M., Francis, S., Bowtell, R. & Schluppeck, D. Mapping human somatosensory cortex in individual subjects with 7T functional MRI. J. Neurophysiol. 103, 2544–2556 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  139. Romo, R., Hernández, A., Zainos, A. & Salinas, E. Somatosensory discrimination based on cortical microstimulation. Nature 392, 387–390 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Romo, R., Hernández, A., Zainos, A., Brody, C. D. & Lemus, L. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26, 273–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Johnson, L. A. et al. Direct electrical stimulation of the somatosensory cortex in humans using electrocorticography electrodes: a qualitative and quantitative report. J. Neural Eng. 10, 036021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cronin, J. A. et al. Task-specific somatosensory feedback via cortical stimulation in humans. IEEE Trans. Haptics 9, 515–522 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Collins, K. L. et al. Ownership of an artificial limb induced by electrical brain stimulation. Proc. Natl Acad. Sci. USA 114, 166–171 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Tabot, G. A. et al. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc. Natl Acad. Sci. USA 110, 18279–18284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Flesher, S. N. et al. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 8, 361ra141 (2016).

    Article  PubMed  Google Scholar 

  147. Kim, S. et al. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex. Proc. Natl Acad. Sci. USA 112, 15202–15207 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hughes, C. L. et al. Perceptual responses to microstimulation frequency are spatially organized in human somatosensory cortex. Preprint at bioRxiv https://doi.org/10.1101/2020.07.16.207506 (2020).

  149. Callier, T., Brantly, N. W., Caravelli, A. & Bensmaia, S. J. The frequency of cortical microstimulation shapes artificial touch. Proc. Natl Acad. Sci. USA 117, 1191–1200 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Kim, S., Callier, T. & Bensmaia, S. J. A computational model that predicts behavioral sensitivity to intracortical microstimulation. J. Neural Eng. 14, 016012 (2017).

    Article  PubMed  Google Scholar 

  151. Armenta Salas, M. et al. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. eLife 7, e32904 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. O’Doherty, J. E. et al. Active tactile exploration using a brain–machine–brain interface. Nature 479, 228–231 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Klaes, C. et al. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback. J. Neural Eng. 11, 056024 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Thomson, E. E., Carra, R. & Nicolelis, M. A. L. Perceiving invisible light through a somatosensory cortical prosthesis. Nat. Commun. 4, 1482 (2013).

    Article  PubMed  Google Scholar 

  155. Pohlmeyer, E. A. et al. Beyond intuitive anthropomorphic control: recent achievements using brain computer interface technologies. In Proc. SPIE 10194, Micro- and Nanotechnology Sensors, Systems, and Applications IX (Eds. George, T. et al.) 101941N (2017).

  156. Dadarlat, M. C., O’Doherty, J. E. & Sabes, P. N. A learning-based approach to artificial sensory feedback leads to optimal integration. Nat. Neurosci. 18, 138–144 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Flesher, S. N. et al. Restored tactile sensation improves neuroprosthetic arm control. Preprint at bioRxiv https://doi.org/10.1101/653428 (2019).

  158. London, B. M., Jordan, L. R., Jackson, C. R. & Miller, L. E. Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a behaving monkey. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 32–36 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Tomlinson, T. & Miller, L. E. Toward a proprioceptive neural interface that mimics natural cortical activity. Adv. Exp. Med. Biol. 957, 367–388 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Klink, P. C., Dagnino, B., Gariel-Mathis, M.-A. & Roelfsema, P. R. Distinct feedforward and feedback effects of microstimulation in visual cortex reveal neural mechanisms of texture segregation. Neuron 95, 209–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Graczyk, E. L., Resnik, L., Schiefer, M. A., Schmitt, M. S. & Tyler, D. J. Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Sci. Rep. 8, 9866 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Srinivasan, S. S., Maimon, B. E., Diaz, M., Song, H. & Herr, H. M. Closed-loop functional optogenetic stimulation. Nat. Commun. 9, 5303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Prsa, M., Galiñanes, G. L. & Huber, D. Rapid integration of artificial sensory feedback during operant conditioning of motor cortex neurons. Neuron 93, 929–939 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Abbasi, A., Goueytes, D., Shulz, D. E., Ego-Stengel, V. & Estebanez, L. A fast intracortical brain–machine interface with patterned optogenetic feedback. J. Neural Eng. 15, 046011 (2018).

    Article  PubMed  Google Scholar 

  166. May, T. et al. Detection of optogenetic stimulation in somatosensory cortex by non-human primates — towards artificial tactile sensation. PLoS ONE 9, e114529 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Cagnan, H., Denison, T., McIntyre, C. & Brown, P. Emerging technologies for improved deep brain stimulation. Nat. Biotechnol. 37, 1024–1033 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Delhaye, B. P., Schluter, E. W. & Bensmaia, S. J. Robo-psychophysics: extracting behaviorally relevant features from the output of sensors on a prosthetic finger. IEEE Trans. Haptics 9, 499–507 (2016).

    Article  PubMed  Google Scholar 

  169. Osborn, L., Nguyen, H., Betthauser, J., Kaliki, R. & Thakor, N. Biologically inspired multi-layered synthetic skin for tactile feedback in prosthetic limbs. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 4622–4625 (IEEE, 2016).

  170. Tee, B. C.-K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Oddo, C. M., Beccai, L., Felder, M., Giovacchini, F. & Carrozza, M. C. Artificial roughness encoding with a bio-inspired MEMS-based tactile sensor array. Sensors 9, 3161–3183 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rongala, U. B., Mazzoni, A. & Oddo, C. M. Neuromorphic artificial touch for categorization of naturalistic textures. IEEE Trans. Neural Netw. Learn. Syst. 28, 819–829 (2017).

    Article  PubMed  Google Scholar 

  173. Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Kuiken, T. A., Marasco, P. D., Lock, B. A., Harden, R. N. & Dewald, J. P. A. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc. Natl Acad. Sci. USA 104, 20061–20066 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Neurological Disorders and Stroke (NINDS) grant no. NS 095251 (S.J.B.); the DARPA contract no. NC66001-15-C-4041, the VA Merit Review Award no. I01 RX00133401 and the VA CDA-1 IK1 RX000724 (D.J.T.); and the Swiss National Center of Competence Research (NCCR) Robotics, the Swiss National Science Foundation (CHRONOS project) and the Bertarelli Foundation (S.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.M. and S.J.B. conceived the project and edited the manuscript. S.M. wrote the section on non-invasive interfaces. S.J.B., S.M. and D.J.T. wrote the section on peripheral nerve interfaces. S.J.B. wrote the section on cortical interfaces.

Corresponding authors

Correspondence to Sliman J. Bensmaia or Silvestro Micera.

Ethics declarations

Competing interests

S.M. holds shares of GTX and Sensars Neuroprosthetics, two start-up companies working to develop advanced technological solutions to restore sensory-motor functions in disabled people. The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensmaia, S.J., Tyler, D.J. & Micera, S. Restoration of sensory information via bionic hands. Nat. Biomed. Eng 7, 443–455 (2023). https://doi.org/10.1038/s41551-020-00630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-020-00630-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research