Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A superluminous supernova lightened by collisions with pulsational pair-instability shells

Abstract

Superluminous supernovae are among the most energetic stellar explosions in the Universe, but their energy sources remain an open question. Here we present long-term observations of one of the closest examples of the hydrogen-poor superluminous supernovae subclass SLSNe-I, supernova SN 2017egm, revealing the most complicated known luminosity evolution of SLSNe-I. Three distinct post-peak bumps were recorded in its light curve collected at about 100–350 days after maximum brightness, challenging current popular power models such as magnetar, fallback accretion, and interaction between ejecta and a circumstellar shell. However, the complex light curve can be well modelled by successive interactions with multiple circumstellar shells with a total mass of about 6.8–7.7 M. In this scenario, large energy deposition from interaction-induced reverse shocks results in ionization of neutral oxygen in the supernova ejecta and hence a much lower nebular-phase line ratio of [O i] λ6,300/([Ca ii] + [O ii]) λ7,300 (~0.2) compared with that derived for other superluminous and normal stripped-envelope supernovae. The pre-existing multiple shells indicate that the progenitor of SN 2017egm experienced pulsational mass ejections triggered by pair instability within 2 years before explosion, in robust agreement with theoretical predictions for a pre-pulsation helium-core mass of 48–51 M.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiband light curves of SN 2017egm.
Fig. 2: Model fits to the bolometric light curves of SN 2017egm.
Fig. 3: Spectral signs of powerful energy deposition for SN 2017egm.
Fig. 4: The nebular-phase [O i]/([Ca ii] + [O ii]) ratios of SLSNe-I and other types of envelope-stripped supernovae.
Fig. 5: Comparison with hydrogen-free PPI models.

Similar content being viewed by others

Data availability

All data of SN 2017egm reported in this paper are publicly available via the Figshare repository (https://doi.org/10.6084/m9.figshare.22009868)86 and the Weizmann Interactive SN Repository (https://wiserep.weizmann.ac.il)87.

References

  1. Quimby, R. M. et al. Hydrogen-poor superluminous stellar explosions. Nature 474, 487–489 (2011).

    ADS  Google Scholar 

  2. Gal-Yam, A. Luminous supernovae. Science 337, 927–932 (2012).

    ADS  Google Scholar 

  3. Delgado, A. et al. Gaia Alerts Transient Discovery Report for 2017-05-25. Transient Name Server Discovery Report 2017-591, 1 (2017).

    ADS  Google Scholar 

  4. Lunnan, R. et al. Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. Astrophys. J. 787, 138 (2014).

    ADS  Google Scholar 

  5. Leloudas, G. et al. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Mon. Not. R. Astron. Soc. 449, 917–932 (2015).

    ADS  Google Scholar 

  6. Perley, D. A. et al. Host-galaxy properties of 32 low-redshift superluminous supernovae from the Palomar Transient Factory. Astrophys. J. 830, 13 (2016).

    ADS  Google Scholar 

  7. Izzo, L. et al. The host of the type I SLSN 2017egm. A young, sub-solar metallicity environment in a massive spiral galaxy. Astron. Astrophys. 610, A11 (2018).

    Google Scholar 

  8. Chen, T.-W. et al. Spatially resolved MaNGA observations of the host galaxy of superluminous supernova 2017egm. Astrophys. J. 849, L4 (2017).

    ADS  Google Scholar 

  9. Nicholl, M. et al. The superluminous supernova SN 2017egm in the nearby galaxy NGC 3191: a metal-rich environment can support a typical SLSN rvolution. Astrophys. J. 845, L8 (2017).

    ADS  Google Scholar 

  10. Bose, S. et al. Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a “normal,” massive, metal-rich spiral galaxy. Astrophys. J. 853, 57 (2018).

    ADS  Google Scholar 

  11. Yan, L. et al. Far-UV HST spectroscopy of an unusual hydrogen-poor superluminous supernova: SN2017egm. Astrophys. J. 858, 91 (2018).

    ADS  Google Scholar 

  12. Nicholl, M., Guillochon, J. & Berger, E. The magnetar model for type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. Astrophys. J. 850, 55 (2017).

    ADS  Google Scholar 

  13. Wheeler, J. C., Chatzopoulos, E., Vinkó, J. & Tuminello, R. Circumstellar interaction models for the bolometric light curve of type I superluminous SN 2017egm. Astrophys. J. 851, L14 (2017).

    ADS  Google Scholar 

  14. Hosseinzadeh, G. et al. Bumpy declining light curves are common in hydrogen-poor superluminous supernovae. Astrophys. J. 933, 14 (2022).

    ADS  Google Scholar 

  15. Tsvetkov, D. Y. et al. Photometric observations of SN 2017egm and peculiar transient AT 2018cow. Contrib. Astron. Observatory Skalnate Pleso 52, 46–63 (2022).

    Google Scholar 

  16. Nicholl, M., Berger, E., Blanchard, P. K., Gomez, S. & Chornock, R. Nebular-phase spectra of superluminous supernovae: physical insights from observational and statistical properties. Astrophys. J. 871, 102 (2019).

    ADS  Google Scholar 

  17. Coppejans, D. L. et al. Jets in hydrogen-poor superluminous supernovae: constraints from a comprehensive analysis of radio observations. Astrophys. J. 856, 56 (2018).

    ADS  Google Scholar 

  18. Chen, Z. H. et al. The hydrogen-poor superluminous supernovae from the Zwicky Transient Facility phase I survey. II. Light-curve modeling and characterization of undulations. Astrophys. J. 943, 42 (2023).

    ADS  Google Scholar 

  19. Arcavi, I. et al. Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature 551, 210–213 (2017).

    ADS  Google Scholar 

  20. Moriya, T. J., Murase, K., Kashiyama, K. & Blinnikov, S. I. Variable thermal energy injection from magnetar spin-down as a possible cause of stripped-envelope supernova light-curve bumps. Mon. Not. R. Astron. Soc. 513, 6210–6218 (2022).

    ADS  Google Scholar 

  21. Metzger, B. D., Beniamini, P. & Giannios, D. Effects of fallback accretion on protomagnetar outflows in gamma-ray bursts and superluminous supernovae. Astrophys. J. 857, 95 (2018).

    ADS  Google Scholar 

  22. Lin, W., Wang, X., Wang, L. & Dai, Z. Supernova luminosity powered by magnetar-disk system. Astrophys. J. 914, L2 (2021).

    ADS  Google Scholar 

  23. Yan, L. et al. Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. Astrophys. J. 814, 108 (2015).

    ADS  Google Scholar 

  24. Yan, L. et al. Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. Astrophys. J. 848, 6 (2017).

    ADS  Google Scholar 

  25. Sun, L., Xiao, L. & Li, G. A mid-infrared study of superluminous supernovae. Mon. Not. R. Astron. Soc. 513, 4057–4073 (2022).

    ADS  Google Scholar 

  26. Chatzopoulos, E., Wheeler, J. C. & Vinko, J. Generalized semi-analytical models of supernova light curves. Astrophys. J. 746, 121 (2012).

    ADS  Google Scholar 

  27. Gal-Yam, A. et al. A WC/WO star exploding within an expanding carbon–oxygen–neon nebula. Nature 601, 201–204 (2022).

    ADS  Google Scholar 

  28. Perley, D. A. et al. The type Icn SN 2021csp: implications for the origins of the fastest supernovae and the fates of Wolf–Rayet stars. Astrophys. J. 927, 180 (2022).

    ADS  Google Scholar 

  29. Chatzopoulos, E., Wheeler, J. C., Vinko, J., Horvath, Z. L. & Nagy, A. Analytical light curve models of superluminous supernovae: χ2-minimization of parameter fits. Astrophys. J. 773, 76 (2013).

    ADS  Google Scholar 

  30. Ben-Ami, S. et al. SN 2010mb: direct evidence for a supernova interacting with a large amount of hydrogen-free circumstellar material. Astrophys. J. 785, 37 (2014).

    ADS  Google Scholar 

  31. Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium—V. Observations of the slow-evolving SN Ibn OGLE-2012-SN-006. Mon. Not. R. Astron. Soc. 449, 1941–1953 (2015).

    ADS  Google Scholar 

  32. Mazzali, P. A., Sullivan, M., Pian, E., Greiner, J. & Kann, D. A. Spectrum formation in superluminous supernovae (type I). Mon. Not. R. Astron. Soc. 458, 3455–3465 (2016).

    ADS  Google Scholar 

  33. Fang, Q. & Maeda, K. The origin of the Ha-like structure in nebular spectra of type IIb supernovae. Astrophys. J. 864, 47 (2018).

    ADS  Google Scholar 

  34. Fang, Q., Maeda, K., Kuncarayakti, H., Sun, F. & Gal-Yam, A. A hybrid envelope-stripping mechanism for massive stars from supernova nebular spectroscopy. Nat. Astron. 3, 434–439 (2019).

    ADS  Google Scholar 

  35. Fang, Q. et al. Statistical properties of the nebular spectra of 103 stripped-envelope core-collapse supernovae. Astrophys. J. 928, 151 (2022).

    ADS  Google Scholar 

  36. Mösta, P. et al. A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528, 376–379 (2015).

    ADS  Google Scholar 

  37. Drout, M. R. et al. The first systematic study of type Ibc supernova multi-band light curves. Astrophys. J. 741, 97 (2011).

    ADS  Google Scholar 

  38. Jerkstrand, A. et al. Long-duration superluminous supernovae at late times. Astrophys. J. 835, 13 (2017).

    ADS  Google Scholar 

  39. Dessart, L. Simulations of light curves and spectra for superluminous type Ic supernovae powered by magnetars. Astron. Astrophys. 621, A141 (2019).

    ADS  Google Scholar 

  40. Chandra, P., Chevalier, R. A., Chugai, N., Fransson, C. & Soderberg, A. M. X-Ray and radio emission from type IIn supernova SN 2010jl. Astrophys. J. 810, 32 (2015).

    ADS  Google Scholar 

  41. Smith, N. Interacting Supernovae: Types IIn and Ibn. in Handbook of Supernovae. (eds Alsabti, A. W. & Murdin, P.) 403–429 (Springer, 2017).

  42. Woosley, S. E., Blinnikov, S. & Heger, A. Pulsational pair instability as an explanation for the most luminous supernovae. Nature 450, 390–392 (2007).

    ADS  Google Scholar 

  43. Woosley, S. E. Pulsational pair-instability supernovae. Astrophys. J. 836, 244 (2017).

    ADS  Google Scholar 

  44. Chatzopoulos, E. & Wheeler, J. C. Hydrogen-poor circumstellar shells from pulsational pair-instability supernovae with rapidly rotating progenitors. Astrophys. J. 760, 154 (2012).

    ADS  Google Scholar 

  45. Marchant, P. et al. Pulsational pair-instability supernovae in very close binaries. Astrophys. J. 882, 36 (2019).

    ADS  Google Scholar 

  46. Renzo, M. et al. Predictions for the hydrogen-free ejecta of pulsational pair-instability supernovae. Astron. Astrophys. 640, A56 (2020).

    Google Scholar 

  47. Leung, S.-C., Nomoto, K. & Blinnikov, S. Pulsational pair-instability supernovae. I. Pre-collapse evolution and pulsational mass ejection. Astrophys. J. 887, 72 (2019).

    ADS  Google Scholar 

  48. Vigna-Gómez, A., Justham, S., Mandel, I., de Mink, S. E. & Podsiadlowski, P. Massive stellar mergers as precursors of hydrogen-rich pulsational pair instability supernovae. Astrophys. J. 876, L29 (2019).

    ADS  Google Scholar 

  49. Deng, L. et al. SONG China project–participating in the global network. in Proc. IAU Symp. 288,Astrophysics from Antarctica (eds Burton, M. G. et al.) 318 (Cambridge Univ. Press, 2013).

  50. Ehgamberdiev, S. Modern astronomy at the Maidanak Observatory in Uzbekistan. Nat. Astron. 2, 349–351 (2018).

    ADS  Google Scholar 

  51. Wang, X. et al. Optical and near-infrared observations of the highly reddened, rapidly expanding type Ia supernova SN 2006X in M100. Astrophys. J. 675, 626–643 (2008).

    ADS  Google Scholar 

  52. Huang, F. et al. The photometric system of the Tsinghua-NAOC 80-cm telescope at NAOC Xinglong Observatory. Res. Astron. Astrophys. 12, 1585–1596 (2012).

    ADS  Google Scholar 

  53. Becker, A. HOTPANTS: High Order Transform of PSF And Template Subtraction. Astrophysics Source Code Library ascl:1504.004 (2015).

  54. Tonry, J. L. et al. The Pan-STARRS1 photometric system. Astrophys. J. 750, 99 (2012).

    ADS  Google Scholar 

  55. Magnier, E. A. et al. Pan-STARRS photometric and astrometric calibration. Astrophys. J. Suppl. Ser. 251, 6 (2020).

    ADS  Google Scholar 

  56. Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).

    ADS  Google Scholar 

  57. Brown, P. J., Breeveld, A. A., Holland, S., Kuin, P. & Pritchard, T. SOUSA: the Swift Optical/Ultraviolet Supernova Archive. Astron. Space Sci. 354, 89–96 (2014).

    ADS  Google Scholar 

  58. Breeveld, A. A. et al. An updated ultraviolet calibration for the Swift/UVOT. AIP Conf. Proc. 1358, 373–376 (American Institute of Physics, 2011).

  59. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Google Scholar 

  60. Inserra, C. et al. Super-luminous type Ic supernovae: catching a magnetar by the tail. Astrophys. J. 770, 128 (2013).

    ADS  Google Scholar 

  61. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS  Google Scholar 

  62. Albareti, F. D. et al. The 13th data release of the Sloan Digital Sky Survey: first spectroscopic data from the SDSS-IV survey mapping nearby galaxies at Apache Point Observatory. Astrophys. J. Suppl. Ser. 233, 25 (2017).

    ADS  Google Scholar 

  63. Liu, L.-D., Wang, L.-J., Wang, S.-Q. & Dai, Z.-G. A multiple ejecta-circumstellar medium interaction model and its implications for superluminous supernovae iPTF15esb and iPTF13dcc. Astrophys. J. 856, 59 (2018).

    ADS  Google Scholar 

  64. Chevalier, R. A. Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 258, 790–797 (1982).

    ADS  Google Scholar 

  65. Maund, J. R., Steele, I., Jermak, H., Wheeler, J. C. & Wiersema, K. RINGO3 polarimetry of the type I superluminous SN 2017egm. Mon. Not. R. Astron. Soc. 482, 4057–4061 (2019).

    ADS  Google Scholar 

  66. Saito, S. et al. Late-phase spectropolarimetric observations of superluminous supernova SN 2017egm to probe the geometry of the inner ejecta. Astrophys. J. 894, 154 (2020).

    ADS  Google Scholar 

  67. Shappee, B. J. et al. The man behind the curtain: X-Rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).

    ADS  Google Scholar 

  68. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    ADS  Google Scholar 

  69. Oke, J. B. & Gunn, J. E. An efficient low resolution and moderate resolution spectrograph for the Hale Telescope. Publ. Astron. Soc. Pac. 94, 586 (1982).

    ADS  Google Scholar 

  70. Fan, Y.-F. et al. Rapid instrument exchanging system for the Cassegrain focus of the Lijiang 2.4-m Telescope. Res. Astron. Astrophys. 15, 918 (2015).

    ADS  Google Scholar 

  71. Miller, J. & Stone, R. The Kast Double Spectrograph. Lick Observatory Technical Report 66 (Lick Observatory, 1993).

  72. Oke, J. B. et al. The Keck Low-Resolution Imaging Spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).

    ADS  Google Scholar 

  73. McLean, I. S. et al. MOSFIRE, the multi-object spectrometer for infra-red exploration at the Keck Observatory. Proc. SPIE 8446, 84460J (Society of Photo-Optical Instrumentation Engineers, 2012).

  74. Filippenko, A. V. The importance of atmospheric differential refraction in spectrophotometry. Publ. Astron. Soc. Pac. 94, 715–721 (1982).

    ADS  Google Scholar 

  75. Fiore, A. et al. SN 2017gci: a nearby type I superluminous supernova with a bumpy tail. Mon. Not. R. Astron. Soc. 502, 2120–2139 (2021).

    ADS  Google Scholar 

  76. Shahbandeh, M. et al. Carnegie Supernova Project-II: near-infrared spectroscopy of stripped-envelope core-collapse supernovae. Astrophys. J. 925, 175 (2022).

    ADS  Google Scholar 

  77. Drout, M. R. et al. The double-peaked SN 2013ge: a type Ib/c SN with an asymmetric mass ejection or an extended progenitor envelope. Astrophys. J. 821, 57 (2016).

    ADS  Google Scholar 

  78. Poznanski, D., Prochaska, J. X. & Bloom, J. S. An empirical relation between sodium absorption and dust extinction. Mon. Not. R. Astron. Soc. 426, 1465–1474 (2012).

    ADS  Google Scholar 

  79. Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G. & Gomes, J. M. Semi-empirical analysis of Sloan Digital Sky Survey galaxies—I. Spectral synthesis method. Mon. Not. R. Astron. Soc. 358, 363–378 (2005).

    ADS  Google Scholar 

  80. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS  Google Scholar 

  81. Schulze, S. et al. Cosmic evolution and metal aversion in superluminous supernova host galaxies. Mon. Not. R. Astron. Soc. 473, 1258–1285 (2018).

    ADS  Google Scholar 

  82. Schulze, S. et al. The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. Astrophys. J. Suppl. Ser. 255, 29 (2021).

    ADS  Google Scholar 

  83. Prentice, S. J. et al. The bolometric light curves and physical parameters of stripped-envelope supernovae. Mon. Not. R. Astron. Soc. 458, 2973–3002 (2016).

    ADS  Google Scholar 

  84. Sollerman, J. et al. Late-time observations of the extraordinary type II supernova iPTF14hls. Astron. Astrophys. 621, A30 (2019).

    Google Scholar 

  85. Wang, L.-J. et al. iPTF14hls in the circumstellar medium interaction model: a promising candidate for a pulsational pair-instability supernova. Astrophys. J. 933, 102 (2022).

    ADS  Google Scholar 

  86. Lin, W. L. et al. Photometric and spectroscopic dataset of superluminous supernova SN 2017egm. Figshare https://doi.org/10.6084/m9.figshare.22009868 (2023).

  87. Yaron, O. & Gal-Yam, A. WISeREP—an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668 (2012).

    ADS  Google Scholar 

  88. Moriya, T. J., Nicholl, M. & Guillochon, J. Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. Astrophys. J. 867, 113 (2018).

    ADS  Google Scholar 

  89. Patat, F. et al. The metamorphosis of SN 1998bw. Astrophys. J. 555, 900–917 (2001).

    ADS  Google Scholar 

  90. Vreeswijk, P. M. et al. On the early-time excess emission in hydrogen-poor superluminous supernovae. Astrophys. J. 835, 58 (2017).

    ADS  Google Scholar 

  91. Lin, W. L. et al. SN 2018hti: a nearby superluminous supernova discovered in a metal-poor galaxy. Mon. Not. R. Astron. Soc. 497, 318–335 (2020).

    ADS  Google Scholar 

  92. Nicholl, M. et al. SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. Astrophys. J. 826, 39 (2016).

    ADS  Google Scholar 

  93. Nicholl, M. et al. Superluminous supernova SN 2015bn in the nebular phase: evidence for the engine-powered explosion of a stripped massive star. Astrophys. J. 828, L18 (2016).

    ADS  Google Scholar 

  94. Inserra, C. et al. Complexity in the light curves and spectra of slow-evolving superluminous supernovae. Mon. Not. R. Astron. Soc. 468, 4642–4662 (2017).

    ADS  Google Scholar 

  95. De Cia, A. et al. Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. Astrophys. J. 860, 100 (2018).

    ADS  Google Scholar 

  96. Lunnan, R. et al. Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey. Astrophys. J. 852, 81 (2018).

    ADS  Google Scholar 

  97. Bianco, F. B. et al. Monte Carlo method for calculating oxygen abundances and their uncertainties from strong-line flux measurements. Astron. Comput. 16, 54–66 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the staff of the 50BiN, AZT, LJT, Swift, XLT, Lick, Palomar and Keck observatories for assistance with the observations. We thank R. J. Foley and S. Kulkarni for their Keck + LRIS observations, and S. Adams for the Keck + MOSFIRE observation. We also thank J. Sollerman for sharing the luminosity data of iPTF14hls, S. Saito for providing Subaru spectrum of SN 2017egm, L. Dessart and A. Jerkstrand for useful discussions, and M. Nicholl and Q. Fang for providing their results of spectral analysis for normal core-collapse and/or superluminous supernovae. The operation of XLT is supported by the Open Project Program of the Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences. Funding for the LJT has been provided by the Chinese Academy of Sciences and the People’s Government of Yunnan Province. The LJT is jointly operated and administrated by Yunnan Observatories and Center for Astronomical Mega-Science, CAS. This research has made use of the Keck Observatory Archive (KOA), which is operated by the W. M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. The Kast red CCD detector upgrade, led by B. Holden, was made possible by the Heising-Simons Foundation, William and Marina Kast, and the University of California Observatories. Research at Lick Observatory is partially funded by a generous gift from Google. The work of X.W. is supported by the National Natural Science Foundation of China (NSFC grants 12288102 and 12033003), the Scholar Program of Beijing Academy of Science and Technology (DZ:BS202002), and the Tencent Xplorer Prize. A.G.-Y.’s research is supported by the European Union via ERC grant 725161, the ISF GW excellence centre, an IMOS space infrastructure grant and BSF/Transformative and GIF grants, as well as the André Deloro Institute for Advanced Research in Space and Optics, the Schwartz/Reisman Collaborative Science Program and the Norman E. Alexander Family Foundation ULTRASAT Data Center Fund, Minerva and Yeda-Sela; A.G.-Y. is the incumbent of the The Arlyn Imberman Professorial Chair. A.V.F.’s group at UC Berkeley received financial support from the Miller Institute for Basic Research in Science (where A.V.F. was a Miller Senior Fellow), the Christopher R. Redlich Fund, and many individual donors. N.B. is funded/co-funded by the European Union (ERC, CET-3PO, 101042610). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. L.X. acknowledges support from National Natural Science Foundation of China (grant no. 12103050), Advanced Talents Incubation Program of the Hebei University, and Midwest Universities Comprehensive Strength Promotion project. L.W. acknowledges support from the National Program on Key Research and Development Project of China (grant 2021YFA0718500).

Author information

Authors and Affiliations

Authors

Contributions

W.L. and X.W. wrote the paper. W.L. led the analysis. X.W. led the overall project. L.Y. and A.G.-Y. assisted with the paper. J.M. reduced the 50BiN, AZT and TNT data. T.G.B. reduced the Keck LRIS data. L.Y. obtained and reduced P200 telescope data. A.V.F., T.G.B. and W.Z. obtained and reduced the Lick telescope data. A.V.F. also helped with the paper. D.X. and H.L. reduced the XLT data. R.L. advised on the interpretation of narrow spectral lines. P.B. reduced the Swift data. M.K. and L.Y. provided the Keck + MOSFIRE data. R.L., C.F. and N.B. provided their Keck + LRIS observations. D.M. and S.A.E. obtained the AZT imaging. K.Z. and Jicheng Zhang obtained the XLT observations. S.Y. and Jujia Zhang reduced the LJT data. Z.C., L.D., K.W. and L.X. helped with the draft. L.W. helped check the model code.

Corresponding author

Correspondence to Xiaofeng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Manos Chatzopoulos, Peter Blanchard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The bolometric light curve of SN 2017egm, as compared to some representative SLSNe-I.

Comparison SLSNe-I include objects with monotonic decay after maximum light (left panel: PTF12dam, yellow stars; SN 2010gx, yellow-green triangles; SN 2018hti, purple squares) and those with post-peak bumps (right panel: LSQ14an, orange squares; PS1-12cil, brown triangles; SN 2015bn, blue triangles; SN 2017gci, green diamonds; ZTF sample, gray lines). The bolometric luminosities of PTF12dam, SN 2017gci, SN 2018hti and the ZTF sample are retrieved from the literature18,75,90,91, while those of other comparison SLSNe-I are derived by fitting the UV-absorbed blackbody curve12 to its multiband photometry57,92,93,94,95,96. In the inset of the right panel, the luminosity evolution of a peculiar SN II iPTF14hls (red pluses) is shown for comparison19,84. The error bars show 1σ uncertainties.

Extended Data Fig. 2 Spectra of SN 2017egm and its host galaxy.

The observations were obtained with Lick+Kast (yellow-green), LJT+YFOSC (yellow), Keck+LRIS (black), Keck+MOSFIRE (light blue), P200+DBSP (green), and XLT+BFOSC (blue). All of the spectra were smoothed with a Savitzky-Golay filter. Telluric absorption that was not removed in some of the spectra is marked with an Earth symbol.

Extended Data Fig. 3 Narrow spectral features observed in the spectra of SN 2017egm and its host galaxy.

The spectra of SN and galaxy are displayed in black and red, respectively. Left panel: He I emission (yellow dot-dashed) and Na I D absorption (purple dashed). Right panel: [N II] (yellow dashed) and Hα (purple dot-dashed).

Extended Data Fig. 4 Identification of emission lines from the host galaxy of SN 2017egm.

The black line shows the Keck+LRIS spectrum obtained at the SN location on 2018 July 13, and the green line displays the residual spectrum after subtraction of the host-galaxy stellar component (red lines) obtained with a starlight-fitting tool79. The oxygen and calcium emission features from the SN are shown in gray shade. Incompletely removed telluric contamination is marked with an Earth symbol.

Extended Data Fig. 5 Near-infrared (NIR) spectrum of SN 2017egm.

The NIR spectra of superluminous SN 2017gci (yellow)75 and Type Ic SN 2013ge (blue)77 are overplotted for comparison. The prominent feature coincident with He I λ10,830 is shaded in gray. All spectra were smoothed with a Savitzky-Golay filter. See text for discussion.

Extended Data Fig. 6 Close-up view of the [O I] λλ6300, 6364 and [O II] λλ7319, 7330 + [Ca II] λλ7291, 7323 features in late-time spectra of SN 2017egm.

Upper panel: observations of [O I] (left) and [O II] + [Ca II] (right) features during the interval t = 126-374 d are shown with dashed16, dotted66 and solid (this work) lines, respectively. The rest-frame wavelengths of these spectral lines are indicated by vertical dot-dashed lines. The 6300 Å feature at t = 120-210 d appears to be asymmetric about the rest wavelengths of [O I], possibly owing to blends with other absorption or emission features. Lower panel: the photometry-calibrated profiles of [O I] (purple) and [O II] + [Ca II] (gray) at t=312 d and t=374 d can be well fitted with Gaussian functions as indicated by the dotted and dashed profiles, respectively. The spectral coverage contaminated by the incompletely removed telluric line is shaded in red and excluded from the Gaussian fit. All spectra were smoothed with the Savitzky-Golay filter.

Extended Data Fig. 7 Environmental metallicity of SN 2017egm estimated from different line-ratio diagnostics via the PYMCZ code97.

For each diagnostic, we perform 2,000 Monte Carlo sampling to obtain the median (black solid line) and interquartile range (IQR; orange box) of the metallicity distribution; the distribution spanning the range of 1.5 × IQR is represented by blue dashed lines (whisker), beyond which the sampling points are considered to be outliers; the minima and maxima values are shown by horizontal blue lines. The gray-shaded region shows the range of solar oxygen abundances reported in the literature.

Extended Data Table 1 Fitting Parameters of the MCSIRD Model for SN 2017egm

Supplementary information

Supplementary Information

Supplementary Tables 1-5 and Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Wang, X., Yan, L. et al. A superluminous supernova lightened by collisions with pulsational pair-instability shells. Nat Astron 7, 779–789 (2023). https://doi.org/10.1038/s41550-023-01957-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01957-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing