Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Algal photoprotection is regulated by the E3 ligase CUL4–DDB1DET1

Abstract

Light is essential for photosynthesis, but the amounts of light that exceed an organism’s assimilation capacity can cause serious damage1. Photosynthetic organisms minimize such potential harm through protection mechanisms collectively referred to as non-photochemical quenching2. One mechanism of non-photochemical quenching called energy-dependent quenching (qE quenching) is readily activated under high-light conditions and dissipates excess energy as heat. LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEINS 1 and 3 (LHCSR1 and LHCSR3) have been proposed to mediate qE quenching in the green alga Chlamydomonas reinhardtii when grown under high-light conditions3. LHCSR3 induction requires a blue-light photoreceptor, PHOTOTROPIN (PHOT)4, although the signal transduction pathway between PHOT and LHCSR3 is not yet clear. Here, we identify two phot suppressor loci involved in qE quenching: de-etiolated 1 (det1)5 and damaged DNA-binding 1 (ddb1)6. Using a yeast two-hybrid analysis and an inhibitor assay, we determined that these two genetic elements are part of a protein complex containing CULLIN 4 (CUL4). These findings suggest a photoprotective role for the putative E3 ubiquitin ligase CUL4–DDB1DET1 in unicellular photosynthetic organisms that may mediate blue-light signals to LHCSR1 and LHCSR3 gene expression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isolation of phot suppressor mutants.
Fig. 2: NPQ, LHCSRs transcripts and LHCSR protein levels in the suppressor mutants.
Fig. 3: Complementation tests for the det1 and ddb1 mutant loci.
Fig. 4: Yeast two-hybrid assay, neddylation inhibitor assay and schematic model.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Horton, P., Ruban, A. V. & Walters, R. G. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684 (1996).

    Article  CAS  Google Scholar 

  2. Niyogi, K. K. & Truong, T. B. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 16, 307–314 (2013).

    Article  CAS  Google Scholar 

  3. Peers, G. et al. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462, 518–521 (2009).

    Article  CAS  Google Scholar 

  4. Petroutsos, D. et al. A blue-light photoreceptor mediates the feedback regulation of photosynthesis. Nature 537, 563–566 (2016).

    Article  CAS  Google Scholar 

  5. Pepper, A., Delaney, T., Washburn, T., Poole, D. & Chory, J. DET1, a negative regulator of light-mediated development and gene expression in Arabidopsis, encodes a novel nuclear-localized protein. Cell 78, 109–116 (1994).

    Article  CAS  Google Scholar 

  6. Schroeder, D. F. et al. De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Curr. Biol. 12, 1462–1472 (2002).

    Article  CAS  Google Scholar 

  7. Li, X. P. et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395 (2000).

    Article  CAS  Google Scholar 

  8. Alboresi, A., Gerotto, C., Giacometti, G. M., Bassi, R. & Morosinotto, T. Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc. Natl Acad. Sci. USA 107, 11128–11133 (2010).

    Article  CAS  Google Scholar 

  9. Petroutsos, D. et al. The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. Plant Cell 23, 2950–2963 (2011).

    Article  CAS  Google Scholar 

  10. Maruyama, S., Tokutsu, R. & Minagawa, J. Transcriptional regulation of the stress-responsive light harvesting complex genes in Chlamydomonas reinhardtii. Plant Cell Physiol. 55, 1304–1310 (2014).

    Article  CAS  Google Scholar 

  11. Yamano, T., Miura, K. & Fukuzawa, H. Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol. 147, 340–354 (2008).

    Article  CAS  Google Scholar 

  12. Moseley, J. L., Chang, C. W. & Grossman, A. R. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot. Cell 5, 26–44 (2006).

    Article  CAS  Google Scholar 

  13. Tilbrook, K. et al. UV-B perception and acclimation in Chlamydomonas reinhardtii. Plant Cell 28, 966–983 (2016).

    Article  CAS  Google Scholar 

  14. Allorent, G. et al. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 113, 14864–14869 (2016).

    Article  CAS  Google Scholar 

  15. Im, C.-S., Eberhard, S., Huang, K., Beck, C. F. & Grossman, A. R. Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J. 48, 1–16 (2006).

    Article  CAS  Google Scholar 

  16. Yamamoto, H. Y. & Kamite, L. The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim. Biophys. Acta 267, 538–543 (1972).

    Article  CAS  Google Scholar 

  17. Lau, O. S. & Deng, X. W. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci. 17, 584–593 (2012).

    Article  CAS  Google Scholar 

  18. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  19. Bernhardt, A. et al. CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J. 47, 591–603 (2006).

    Article  CAS  Google Scholar 

  20. Chen, H. et al. Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell 18, 1991–2004 (2006).

    Article  CAS  Google Scholar 

  21. Zhang, Z. et al. Transcription factor Etv5 is essential for the maintenance of alveolar type II cells. Proc. Natl Acad. Sci. USA 114, 3903–3908 (2017).

    Article  CAS  Google Scholar 

  22. Pan, Z. Q., Kentsis, A., Dias, D. C., Yamoah, K. & Wu, K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985–1997 (2004).

    Article  CAS  Google Scholar 

  23. Gong, L. & Yeh, E. T. Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J. Biol. Chem. 274, 12036–12042 (1999).

    Article  CAS  Google Scholar 

  24. Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    Article  CAS  Google Scholar 

  25. Yin, R. & Ulm, R. How plants cope with UV-B: from perception to response. Curr. Opin. Plant Biol. 37, 42–48 (2017).

    Article  CAS  Google Scholar 

  26. Sakai, T. et al. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl Acad. Sci. USA 98, 6969–6974 (2001).

    Article  CAS  Google Scholar 

  27. Cazzaniga, S., Dall’ Osto, L., Kong, S. G., Wada, M. & Bassi, R. Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. Plant J. 76, 568–579 (2013).

    Article  CAS  Google Scholar 

  28. Michelle, C., Vourc’h, P., Mignon, L. & Andres, C. R. What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J. Mol. Evol. 68, 616–628 (2009).

    Article  CAS  Google Scholar 

  29. Yanagawa, Y. et al. Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes Dev. 18, 2172–2181 (2004).

    Article  CAS  Google Scholar 

  30. Pick, E. et al. Mammalian DET1 regulates Cul4A activity and forms stable complexes with E2 ubiquitin-conjugating enzymes. Mol. Cell. Biol. 27, 4708–4719 (2007).

    Article  CAS  Google Scholar 

  31. Chen, X., Zhang, Y., Douglas, L. & Zhou, P. UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J. Biol. Chem. 276, 48175–48182 (2001).

    Article  CAS  Google Scholar 

  32. Hoecker, U., Tepperman, J. M. & Quail, P. H. SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284, 496–499 (1999).

    Article  CAS  Google Scholar 

  33. Zou, Y. et al. Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J. Biol. Chem. 284, 33320–33332 (2009).

    Article  CAS  Google Scholar 

  34. Gorman, D. S. & Levine, R. P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl Acad. Sci. USA 54, 1665–1669 (1965).

    Article  CAS  Google Scholar 

  35. Sueoka, N. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardti. Proc. Natl Acad. Sci. USA 46, 83–91 (1960).

    Article  CAS  Google Scholar 

  36. Berthold, P., Schmitt, R. & Mages, W. An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153, 401–412 (2002).

    Article  CAS  Google Scholar 

  37. Gonzalez-Ballester, D., de Montaigu, A., Galvan, A. & Fernandez, E. Restriction enzyme site-directed amplification PCR: a tool to identify regions flanking a marker DNA. Anal. Biochem. 340, 330–335 (2005).

    Article  CAS  Google Scholar 

  38. Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394 (1989).

    Article  CAS  Google Scholar 

  39. Tokutsu, R. & Minagawa, J. Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 110, 10016–10021 (2013).

    Article  CAS  Google Scholar 

  40. Motohashi, K. A simple and efficient seamless DNA cloning method using SLiCE from Escherichia coli laboratory strains and its application to SLiP site-directed mutagenesis. BMC Biotechnol. 15, 47 (2015).

    Article  Google Scholar 

  41. James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  Google Scholar 

  43. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  44. Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

    Article  CAS  Google Scholar 

  45. Bonente, G. et al. Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol. 9, e1000577 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Noda for help with the pigment analysis, and X. W. Deng and M. Ishikawa for valuable discussions. This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (JP16H06553 and JP26251033 to J.M.).

Author information

Authors and Affiliations

Authors

Contributions

Y.A. and J.M. conceived the work and wrote the manuscript. Y.A., K.F.-K. and T.Y. performed the experiments. All authors designed the experiments, analysed and discussed the results, and approved the final version of the manuscript.

Corresponding author

Correspondence to Jun Minagawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11 and Supplementary Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aihara, Y., Fujimura-Kamada, K., Yamasaki, T. et al. Algal photoprotection is regulated by the E3 ligase CUL4–DDB1DET1. Nature Plants 5, 34–40 (2019). https://doi.org/10.1038/s41477-018-0332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0332-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing