Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic and spatial restriction of Polycomb activity by plant histone demethylases

Abstract

Targeted changes in chromatin state at thousands of genes are central to eukaryotic development. RELATIVE OF EARLY FLOWERING 6 (REF6) is a Jumonji-type histone demethylase that counteracts Polycomb repressive complex 2 (PRC2)-mediated gene silencing in plants and was reported to select its binding sites in a direct, sequence-specific manner1,2,3. Here we show that REF6 and its two close paralogues determine spatial ‘boundaries’ of the repressive histone H3K27me3 mark in the genome and control the tissue-specific release from PRC2-mediated gene repression. Targeted mutagenesis revealed that these histone demethylases display pleiotropic, redundant functions in plant development, several of which depend on trans factor-mediated recruitment. Thus, Jumonji-type histone demethylases restrict repressive chromatin domains and contribute to tissue-specific gene activation via complementary targeting mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Arabidopsis JMJ13 is a histone H3 lysine 27 demethylase and ELF6, REF6 and JMJ13 are essential developmental regulators in Arabidopsis.
Fig. 2: ELF6, REF6 and JMJ13 regulate Arabidopsis development via reduction of H3K27me3 level.
Fig. 3: Tissue-specific gene regulation by REF6.
Fig. 4: Mechanisms of REF6 target site recruitment.

Similar content being viewed by others

References

  1. Lu, F., Cui, X., Zhang, S., Jenuwein, T., & Cao, X. Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat. Genet. 43, 715–719 (2011).

    Article  PubMed  CAS  Google Scholar 

  2. Cui, X. et al. REF6 recognizes a specific DNA sequence to demethylate H3K27me3 and regulate organ boundary formation in Arabidopsis. Nat. Genet. 48, 694–699 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Li, C. et al. Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat. Genet. 48, 687–693 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zhang, X. et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 5, e129 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Turck, F. et al. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet. 3, e86 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mozgova, I., & Köhler, C. DNA-sequence-specific erasers of epigenetic memory. Nat. Genet. 48, 591–592 (2016).

    Article  PubMed  CAS  Google Scholar 

  7. Xiao, J. & Wagner, D. Polycomb repression in the regulation of growth and development in Arabidopsis. Curr. Opin. Plant Biol. 23, 15–24 (2015).

    Article  PubMed  CAS  Google Scholar 

  8. Engelhorn, J., Blanvillain, R. & Carles, C. C. Gene activation and cell fate control in plants: a chromatin perspective. Cell. Mol. Life Sci. 71, 3119–37 (2014).

    Article  PubMed  CAS  Google Scholar 

  9. Crevillén, P. et al. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 515, 587–590 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gan, E.-S. et al. Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis. Nat. Commun. 5, 5098 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Gan, E.-S., Xu, Y. & Ito, T. Dynamics of H3K27me3 methylation and demethylation in plant development. Plant Signal. Behav. 10, e1027851 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Noh, B. et al. Divergent roles of a pair of homologous Jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell Online 16, 2601–2613 (2004).

    Article  CAS  Google Scholar 

  13. Yu, X. et al. Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc. Natl Acad. Sci. USA 105, 7618–23 (2008).

    Article  PubMed  Google Scholar 

  14. Jones, M. A. et al. Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc. Natl Acad. Sci. USA 107, 21623–21628 (2010).

    Article  PubMed  Google Scholar 

  15. Lu, S. X. et al. The Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock. Plant Physiol. 155, 90615 (2011).

    Article  PubMed  CAS  Google Scholar 

  16. Xiao, J. et al. Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat. Genet. 49, 1546–1552 (2017).

    Article  PubMed  CAS  Google Scholar 

  17. Dumesic, P. A. et al. Product binding enforces the genomic specificity of a yeast polycomb repressive complex. Cell 160, 204–18 (2015).

    Article  PubMed  CAS  Google Scholar 

  18. Mozgova, I., Köhler, C. & Hennig, L. Keeping the gate closed: functions of the polycomb repressive complex PRC2 in development. Plant J. 83, 121–132 (2015).

    Article  PubMed  CAS  Google Scholar 

  19. Payne, T., Johnson, S. D. & Koltunow, A. M. KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium. Development 131, 3737–3749 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Sun, B., Xu, Y., Ng, K.-H. & Ito, T. A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev. 23, 1791–804 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Aoki, T. et al. Bi-functional cross-linking reagents efficiently capture protein-DNA complexes in Drosophila embryos. Fly (Austin) 8, 43–51 (2014).

    Article  Google Scholar 

  22. Hyun, Y. et al. Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Dev. Cell 37, 254–266 (2016).

    Article  PubMed  CAS  Google Scholar 

  23. Hou, X. et al. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat. Commun. 5, 4601 (2014).

    Article  PubMed  CAS  Google Scholar 

  24. Smaczniak, C. et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc. Natl Acad. Sci. USA 109, 1560–1565 (2012).

    Article  PubMed  Google Scholar 

  25. Kaufmann, K. et al. Orchestration of floral initiation by APETALA1. Science 328, 85–89 (2010).

    Article  PubMed  CAS  Google Scholar 

  26. Pajoro, A. et al. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol. 15, R41 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chen, Q. et al. Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice. PLoS Genet. 9, e1003239 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yan, W., Chen, D. & Kaufmann, K. Efficient multiplex mutagenesis by RNA-guided Cas9 and its use in the characterization of regulatory elements in the AGAMOUS gene. Plant Methods 12, 23 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kaufmann, K. et al. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat. Protoc. 5, 457–472 (2010).

    Article  PubMed  CAS  Google Scholar 

  30. Van Mourik, H., Muiño, J. M., Pajoro, A., Angenent, G. C. & Kaufmann, K. in Plant Functional Genomics: Methods and Protocols Vol. 1284 (eds Alonso, J. & Stepanova, A.) 93–121 (Humana Press, New York, NY, 2015).

  31. Smaczniak, C. et al. Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat. Protoc. 7, 2144–2158 (2012).

    Article  PubMed  CAS  Google Scholar 

  32. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  PubMed  CAS  Google Scholar 

  33. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  PubMed  CAS  Google Scholar 

  34. Lu, F. et al. Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J. Integr. Plant Biol. 50, 886–896 (2008).

    Article  PubMed  CAS  Google Scholar 

  35. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  PubMed  CAS  Google Scholar 

  37. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bailey, T. et al. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput. Biol. 9 (2013).

  41. Chen, D. & Kaufmann, K. Integration of genome-wide TF binding and gene expression data to characterize gene regulatory networks in plant development. Methods Mol. Biol. 1629, 239–269 (2017).

    Article  PubMed  CAS  Google Scholar 

  42. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).

    Article  Google Scholar 

  45. Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. DeepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, 187–191 (2014).

    Article  CAS  Google Scholar 

  46. Engelhorn, J. et al. Dynamics of H3K4me3 chromatin marks prevails over H3K27me3 for gene regulation during flower morphogenesis in Arabidopsis thaliana. Epigenomes 1, 8 (2017).

    Article  Google Scholar 

  47. ÓMaoiléidigh, D. S. et al. Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. Plant Cell 25, 2482–503 (2013).

    Article  PubMed  CAS  Google Scholar 

  48. Yant, L. et al. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell Online 22, 2156–2170 (2010).

    Article  CAS  Google Scholar 

  49. Wuest, S. E. et al. Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc. Natl Acad. Sci. USA 109, 13452–13457 (2012).

    Article  PubMed  Google Scholar 

  50. Bencivenga, S., Serrano-Mislata, A., Bush, M., Fox, S. & Sablowski, R. Control of oriented tissue growth through repression of organ boundary genes promotes stem morphogenesis. Dev. Cell 39, 198–208 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Simonini, S., Bencivenga, S., Trick, M. & Østergaard, L. Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. Plant Cell 29, 1864–1882 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mateos, J. L. et al. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol. 16, 31 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Deng, W. et al. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc. Natl Acad. Sci. USA 108, 6680–6685 (2011).

    Article  PubMed  Google Scholar 

  54. Posé, D. et al. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503, 414–417 (2013).

    Article  PubMed  CAS  Google Scholar 

  55. Schiessl, K., Muino, J. M. & Sablowski, R. Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors. Proc. Natl Acad. Sci. USA 111, 2830–2835 (2014).

    Article  PubMed  CAS  Google Scholar 

  56. Moyroud, E. et al. Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Plant Cell 23, 1293–306 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kaufmann, K. et al. Target genes of the MADS transcription factorsepallata3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol. 7, 0854–0875 (2009).

    Article  CAS  Google Scholar 

  58. Immink, R. G. H. et al. Characterization of SOC1’s central role in flowering by the identification of its upstream and downstream regulators. Plant Physiol. 160, 433–449 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gregis, V. et al. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol. 14, R56 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bardet, A. F., He, Q., Zeitlinger, J. & Stark, A. A computational pipeline for comparative ChIP-seq analyses. Nat. Protoc. 7, 45–61 (2011).

    Article  PubMed  CAS  Google Scholar 

  61. Chen, D. et al. The HTPmod Shiny application enables modeling and visualization of large-scale biological data. Commun. Biol. 1, 89 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–8 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhou, X. et al. The human epigenome browser at Washington University. Nat. Methods 8, 989–990 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank X. Cao from Chinese Academy of Sciences, Beijing, China for kindly providing us with the ref6-1, ref6-3 and clf-28 mutants. We thank T. Ito from Temasek Life Sciences Laboratory (TLL), National University of Singapore for sending seeds of the jmj30-2 jmj32-1 double mutant. pREF6-REF6-GFP ref6-1 and pREF6-REF6∆ZnF-GFP ref6-1 are gifts from Y. Cui from Agriculture and Agri-Food Canada, London Research and Development Centre. The authors acknowledge the North German Supercomputing Alliance (HLRN) for providing HPC resources that contribute to the research results reported in this study. K.K. wishes to thank the Alexander von Humboldt foundation and the Federal Ministry of Education and Research for funding.

Author information

Authors and Affiliations

Authors

Contributions

W.Y. conducted all the genetic studies, performed most of the experiments and interpreted the data. D.C. performed all bioinformatic analyses, interpreted the data and prepared the figures. C.S. analysed the protein complex isolation data. Mass spectrometry was performed by A.G. The enzyme activity assay was conducted by H.L., W.Yang; and D.-X.Z., K.K. and W.Y. conceived and initiated the project. K.K. wrote the manuscript with input from W.Y., D.C., J.E. and C.C.C.

Corresponding authors

Correspondence to Wenhao Yan or Kerstin Kaufmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text and Supplementary Figures 1–25.

Reporting Summary

Supplementary Data Set 1

Analysis of H3K27me3 ChIP-seq data in wild-type and elf6-3 ref6C jmj13G triple mutant.

Supplementary Data Set 2

Analysis of RNA-seq data in wild-type, ref6 single, elf6-3 ref6C double and elf6-3 ref6C jmj13G triple mutants.

Supplementary Data Set 3

Analysis of REF6 ChIP-seq data generated with or without DSG fixation.

Supplementary Data Set 4

GO analysis of tissue-specific REF6 targets.

Supplementary Data Set 5

Primers used in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Chen, D., Smaczniak, C. et al. Dynamic and spatial restriction of Polycomb activity by plant histone demethylases. Nature Plants 4, 681–689 (2018). https://doi.org/10.1038/s41477-018-0219-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0219-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing