Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Topical Collection - Digital Hypertension
  • Published:

Digital hypertension towards to the anticipation medicine

Abstract

“Digital Hypertension” is a new research field proposed by the Japanese Society of Hypertension that integrates digital technology into hypertension management and proactively promotes research activities. This novel approach includes the development of new technologies for better BP management, such as sensors for detecting environmental factors that affect BP, information processing, and machine learning. To facilitate “Digital Hypertension,” a more sophisticated BP monitoring system capable of measuring an individual’s BP more frequently in various situations would be required. With the use of these technologies, hypertension management could shift from the current “dots” management based on office BP readings during clinic visits to a “line” management system based on seamless home BP or individual BP data taken by a wearable BP monitoring device.

DTx is the innovation to change hypertension management from “dots” to “line”, completely achieved by wearable BP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kario K Essential Manual on Perfect 24-hour Blood Pressure Management from Morning to Nocturnal Hypertension.: Wiley Blackwell; 2022, p. 1–374.

  2. Kario K, Harada N, Okura A. Digital therapeutics in hypertension: evidence and perspectives. Hypertension. 2022;79:2148–58.

    Article  CAS  PubMed  Google Scholar 

  3. Kario K, Harada N, Okura A. State-of-the-art rapid review of the current landscape of digital hypentension. Conn Health. 2022;1:46–58.

  4. Omboni S, McManus RJ, Bosworth HB, Chappell LC, Green BB, Kario K, et al. Evidence and Recommendations on the Use of Telemedicine for the Management of Arterial Hypertension: An International Expert Position Paper. Hypertension 2020;76:1368–83.

    Article  CAS  PubMed  Google Scholar 

  5. Kario K, Hoshide S, Mogi M. Digital hypertension 2023: concept, hypothesis, and new technology. Hypertens Res. 2022;45:1529–30.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kario K. Management of hypertension in the digital era: small wearable monitoring devices for remote blood pressure monitoring. Hypertension 2020;76:640–50.

    Article  CAS  PubMed  Google Scholar 

  7. Kario K, Mogi M, Hoshide S. Latest hypertension research to inform clinical practice in Asia. Hypertens Res. 2022;45:555–72.

    Article  PubMed  Google Scholar 

  8. Pellegrini D, Torlasco C, Ochoa JE, Parati G. Contribution of telemedicine and information technology to hypertension control. Hypertens Res. 2020;43:621–8.

    Article  PubMed  Google Scholar 

  9. Yatabe J, Yatabe MS, Ichihara A. The current state and future of internet technology-based hypertension management in Japan. Hypertens Res. 2021;44:276–85.

    Article  PubMed  Google Scholar 

  10. Node K, Kishi T, Tanaka A, Itoh H, Rakugi H, Ohya Y, et al. The Japanese Society of Hypertension-Digest of plan for the future. Hypertens Res. 2018;41:989–90.

    Article  PubMed  Google Scholar 

  11. Matsuoka R, Akazawa H, Kodera S, Komuro I. The dawning of the digital era in the management of hypertension. Hypertens Res. 2020;43:1135–40.

    Article  PubMed  Google Scholar 

  12. Nakagami H. New wave of digital hypertension management for clinical applications. Hypertens Res. 2022;45:1549–51.

    Article  PubMed  Google Scholar 

  13. Rakugi H. Further promotion of “the JSH plan for the future” conscious of new normal after/with COVID-19: message from the new president of the Japanese Society of Hypertension. Hypertens Res. 2021;44:4–6.

    Article  CAS  PubMed  Google Scholar 

  14. Waki T, Miura K, Tanaka-Mizuno S, Ohya Y, Node K, Itoh H, et al. Prevalence of hypertensive diseases and treated hypertensive patients in Japan: A nationwide administrative claims database study. Hypertens Res. 2022;45:1123–33.

    Article  PubMed  Google Scholar 

  15. Kario K, Harada N, Okura A. The first software as medical device of evidence-based hypertension digital therapeutics for clinical practice. Hypertens Res. 2022;45:1899–905.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kario K. Evidence and perspectives on the 24-hour management of hypertension: hemodynamic biomarker-initiated ‘anticipation medicine’ for zero cardiovascular event. Prog Cardiovasc Dis. 2016;59:262–81.

    Article  PubMed  Google Scholar 

  17. Kario K, Tomitani N, Kanegae H, Yasui N, Nishizawa M, Fujiwara T, et al. Development of a new ICT-based multisensor blood pressure monitoring system for use in hemodynamic biomarker-initiated anticipation medicine for cardiovascular disease: The National IMPACT Program Project. Prog Cardiovasc Dis. 2017;60:435–49.

    Article  PubMed  Google Scholar 

  18. Kario K. New insight of morning blood pressure surge into the triggers of cardiovascular disease-synergistic resonance of blood pressure variability. Am J Hypertens. 2016;29:14–6.

    Article  PubMed  Google Scholar 

  19. Kario K, Chirinos JA, Townsend RR, Weber MA, Scuteri A, Avolio A, et al. Systemic hemodynamic atherothrombotic syndrome (SHATS) - Coupling vascular disease and blood pressure variability: proposed concept from pulse of Asia. Prog Cardiovasc Dis. 2020;63:22–32.

    Article  PubMed  Google Scholar 

  20. Kario K, Thijs L, Staessen JA. Blood pressure measurement and treatment decisions. Circ Res. 2019;124:990–1008.

    Article  CAS  PubMed  Google Scholar 

  21. Kario K, Williams B. Nocturnal hypertension and heart failure: mechanisms, evidence, and new treatments. Hypertension 2021;78:564–77.

    Article  CAS  PubMed  Google Scholar 

  22. Kario K, Hoshide S, Mizuno H, Kabutoya T, Nishizawa M, Yoshida T, et al. Nighttime blood pressure phenotype and cardiovascular prognosis: practitioner-based nationwide JAMP study. Circulation 2020;142:1810–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Y, Wang JG. Isolated nocturnal hypertension: a disease masked in the dark. Hypertension. 2013;61:278–83.

    Article  CAS  PubMed  Google Scholar 

  24. Kario K, Kanegae H, Tomitani N, Okawara Y, Fujiwara T, Yano Y, et al. Nighttime blood pressure measured by home blood pressure monitoring as an independent predictor of cardiovascular events in general practice. Hypertension. 2019;73:1240–8.

    Article  CAS  PubMed  Google Scholar 

  25. Fujiwara T, Hoshide S, Kanegae H, Kario K. Cardiovascular event risks associated with masked nocturnal hypertension defined by home blood pressure monitoring in the J-HOP nocturnal blood pressure study. Hypertension. 2020;76:259–66.

    Article  CAS  PubMed  Google Scholar 

  26. Hoshide S, Kanegae H, Kario K. Nighttime home blood pressure as a mediator of N-terminal pro-brain natriuretic peptide in cardiovascular events. Hypertens Res. 2021;44:1138–46.

    Article  CAS  PubMed  Google Scholar 

  27. Kario K, Hoshide S, Nagai M, Okawara Y, Kanegae H. Sleep and cardiovascular outcomes in relation to nocturnal hypertension: the J-HOP Nocturnal Blood Pressure Study. Hypertens Res. 2021;44:1589–96.

    Article  CAS  PubMed  Google Scholar 

  28. Narita K, Hoshide S, Kario K. Nighttime home blood pressure is associated with the cardiovascular disease events risk in treatment-resistant hypertension. Hypertension. 2022;79:e18–e20.

    Article  CAS  PubMed  Google Scholar 

  29. Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation. 2003;107:1401–6.

    Article  PubMed  Google Scholar 

  30. Hoshide S, Kario K. Morning surge in blood pressure and stroke events in a large modern ambulatory blood pressure monitoring cohort: results of the JAMP study. Hypertension. 2021;78:894–6.

    Article  CAS  PubMed  Google Scholar 

  31. Hoshide S, Yano Y, Haimoto H, Yamagiwa K, Uchiba K, Nagasaka S, et al. Morning and evening home blood pressure and risks of incident stroke and coronary artery disease in the Japanese general practice population: The Japan Morning Surge-Home Blood Pressure Study. Hypertension 2016;68:54–61.

    Article  CAS  PubMed  Google Scholar 

  32. Narita K, Hoshide S, Kario K. Difference between morning and evening home blood pressure and cardiovascular events: the J-HOP Study (Japan Morning Surge-Home Blood Pressure). Hypertens Res. 2021;44:1597–605.

    Article  PubMed  Google Scholar 

  33. Hoshide S, Yano Y, Mizuno H, Kanegae H, Kario K. Day-by-day variability of home blood pressure and incident cardiovascular disease in clinical practice: The J-HOP Study (Japan Morning Surge-Home Blood Pressure). Hypertension. 2018;71:177–84.

    Article  CAS  PubMed  Google Scholar 

  34. Fujiwara T, Hoshide S, Kanegae H, Kario K. Clinical impact of the maximum mean value of home blood pressure on cardiovascular outcomes: a novel indicator of home blood pressure variability. Hypertension 2021;78:840–50.

    Article  CAS  PubMed  Google Scholar 

  35. Ishiyama Y, Hoshide S, Kanegae H, Kario K. Increased arterial stiffness amplifies the association between home blood pressure variability and cardiac overload: the J-HOP study. Hypertension. 2020;75:1600–6.

    Article  CAS  PubMed  Google Scholar 

  36. Ishiyama Y, Hoshide S, Kanegae H, Kario K. Impact of home blood pressure variability on cardiovascular outcome in patients with arterial stiffness: Results of the J-HOP study. J Clin Hypertens (Greenwich). 2021;23:1529–37.

    Article  CAS  PubMed  Google Scholar 

  37. Schutte AE, Kollias A, Stergiou GS. Blood pressure and its variability: classic and novel measurement techniques. Nat Rev Cardiol. 2022;19:643–54.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stergiou GS, Mukkamala R, Avolio A, Kyriakoulis KG, Mieke S, Murray A, et al. Cuffless blood pressure measuring devices: review and statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens. 2022;40:1449–60.

    Article  CAS  PubMed  Google Scholar 

  39. Stergiou GS, Avolio AP, Palatini P, Kyriakoulis KG, Schutte AE, Mieke S, et al. European Society of Hypertension recommendations for the validation of cuffless blood pressure measuring devices: European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens. 2023. in press.

  40. Mancia G (Chairperson), Kreutz R (Co-Chair), Brunstrom M, Burnier M, Grassi G, Januszewicz A, et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J Hypertens. 2023. in press.

  41. Kuwabara M, Harada K, Hishiki Y, Kario K. Validation of two watch-type wearable blood pressure monitors according to the ANSI/AAMI/ISO81060-2:2013 guidelines: Omron HEM-6410T-ZM and HEM-6410T-ZL. J Clin Hypertens (Greenwich). 2019;21:853–8.

    Article  PubMed  Google Scholar 

  42. Kario K, Shimbo D, Tomitani N, Kanegae H, Schwartz JE, Williams B. The first study comparing a wearable watch-type blood pressure monitor with a conventional ambulatory blood pressure monitor on in-office and out-of-office settings. J Clin Hypertens (Greenwich). 2020;22:135–41.

    Article  PubMed  Google Scholar 

  43. Tomitani N, Kanegae H, Suzuki Y, Kuwabara M, Kario K. Stress-induced blood pressure elevation self-measured by a wearable watch-type device. Am J Hypertens. 2021;34:377–82.

    Article  PubMed  Google Scholar 

  44. Kario K, Tomitani N, Morimoto T, Kanegae H, Lacy P, Williams B. Relationship between blood pressure repeatedly measured by a wrist-cuff oscillometric wearable blood pressure monitoring device and left ventricular mass index in working hypertensive patients. Hypertens Res. 2022;45:87–96.

    Article  PubMed  Google Scholar 

  45. Tomitani N, Kanegae H, Kario K. Self-monitoring of psychological stress-induced blood pressure in daily life using a wearable watch-type oscillometric device in working individuals with hypertension. Hypertens Res. 2022;45:1531–7.

    Article  PubMed  Google Scholar 

  46. Kario K. Nocturnal hypertension: new technology and evidence. Hypertension. 2018;71:997–1009.

    Article  CAS  PubMed  Google Scholar 

  47. Asayama K, Fujiwara T, Hoshide S, Ohkubo T, Kario K, Stergiou GS, et al. Nocturnal blood pressure measured by home devices: evidence and perspective for clinical application. J Hypertens. 2019;37:905–16.

    Article  CAS  PubMed  Google Scholar 

  48. Kario K, Tomitani N, Iwashita C, Shiga T, Kanegae H. Simultaneous self-monitoring comparison of a supine algorithm-equipped wrist nocturnal home blood pressure monitoring device with an upper arm device. J Clin Hypertens (Greenwich). 2021;23:793–801.

    Article  CAS  PubMed  Google Scholar 

  49. Tomitani N, Hoshide S, Kario K. Accurate nighttime blood pressure monitoring with less sleep disturbance. Hypertens Res. 2021;44:1671–3.

    Article  PubMed  Google Scholar 

  50. Tomitani N, Kanegae H, Kario K. Reproducibility of nighttime home blood pressure measured by a wrist-type nocturnal home blood pressure monitoring device. J Clin Hypertens (Greenwich). 2021;23:1872–8.

    Article  PubMed  Google Scholar 

  51. Tomitani N, Kanegae H, Kario K. Comparison of nighttime measurement schedules using a wrist-type nocturnal home blood pressure monitoring device. J Clin Hypertens (Greenwich). 2021;23:1144–9.

    Article  PubMed  Google Scholar 

  52. Ota Y, Kokubo A, Yamashita S, Kario K. Development of small and lightweight beat-by-beat blood pressure monitoring device based on tonometry. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:5455–8.

    PubMed  Google Scholar 

  53. Kokubo A, Kuwabara M, Nakajima H, Tomitani N, Yamashita S, Shiga T, et al. Automatic detection algorithm for establishing standard to identify “surge blood pressure”. Med Biol Eng Comput. 2020;58:1393–404.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kokubo A, Kuwabara M, Ota Y, Tomitani N, Yamashita S, Shiga T, et al. Nocturnal blood pressure surge in seconds is a new determinant of left ventricular mass index. J Clin Hypertens (Greenwich). 2022;24:271–82.

    Article  CAS  PubMed  Google Scholar 

  55. Kario K, Hoshide S, Tomitani N, Nishizawa M, Yoshida T, Kabutoya T, et al. Inconsistent control status of office, home, and ambulatory blood pressure all taken using the same device: the HI-JAMP study baseline data. Am J Hypertens. 2023;36:90–101.

    Article  PubMed  Google Scholar 

  56. Tomitani N, Hoshide S, Kario K, investigators H-Js. Diagnostic agreement of masked uncontrolled hypertension detected by ambulatory blood pressure and home blood pressure measured by an all-in-one BP monitoring device: The HI-JAMP study. Hypertens Res. 2023;46:157–64.

    Article  PubMed  Google Scholar 

  57. Watanabe T, Tomitani N, Yasui N, Kario K. Validation of an ambulatory blood pressure monitoring device employing a novel method to detect atrial fibrillation. Hypertens Res. 2022;45:1345–52.

    Article  PubMed  Google Scholar 

  58. Watanabe T, Hoshide S, Kario K. New concept of pulse irregularity for the detection of atrial fibrillation during blood pressure measurement. Hypertens Res. 2022;45:1520–2.

    Article  PubMed  Google Scholar 

  59. Watanabe T, Tomitani N, Yasui N, Kabutoya T, Hoshide S, Kario K. Assessment of a new algorithm to detect atrial fibrillation in home blood pressure monitoring device among healthy adults and patients with atrial fibrillation. J Clin Hypertens (Greenwich). 2021;23:1085–8.

    Article  PubMed  Google Scholar 

  60. Kabutoya T, Takahashi S, Watanabe T, Imai Y, Uemoto K, Yasui N, et al. Diagnostic accuracy of an algorithm for detecting atrial fibrillation in a wrist-type pulse wave monitor. J Clin Hypertens (Greenwich). 2019;21:1393–8.

    Article  PubMed  Google Scholar 

  61. Kario K, Nishizawa M, Hoshide S, Shimpo M, Ishibashi Y, Kunii O, et al. Development of a disaster cardiovascular prevention network. Lancet 2011;378:1125–7.

    Article  PubMed  Google Scholar 

  62. Nishizawa M, Hoshide S, Okawara Y, Matsuo T, Kario K. Strict blood pressure control achieved using an ICT-based home blood pressure monitoring system in a catastrophically damaged area after a disaster. J Clin Hypertens (Greenwich). 2017;19:26–9.

    Article  PubMed  Google Scholar 

  63. Nishizawa M, Fujiwara T, Hoshide S, Sato K, Okawara Y, Tomitani N, et al. Winter morning surge in blood pressure after the Great East Japan Earthquake. J Clin Hypertens (Greenwich). 2019;21:208–16.

    Article  PubMed  Google Scholar 

  64. Kario K, Tomitani N, Kanegae H, Yasui N, Nagai R, Harada H. The further development of out-of-office BP monitoring: Japan’s ImPACT Program Project’s achievements, impact, and direction. J Clin Hypertens (Greenwich). 2019;21:344–9.

    Article  PubMed  Google Scholar 

  65. Umishio W, Ikaga T, Kario K, Fujino Y, Hoshi T, Ando S, et al. Cross-sectional analysis of the relationship between home blood pressure and indoor temperature in winter: a nationwide smart wellness housing survey in Japan. Hypertension 2019;74:756–66.

    Article  CAS  PubMed  Google Scholar 

  66. Umishio W, Ikaga T, Kario K, Fujino Y, Suzuki M, Ando S, et al. Impact of indoor temperature instability on diurnal and day-by-day variability of home blood pressure in winter: a nationwide Smart Wellness Housing survey in Japan. Hypertens Res. 2021;44:1406–16.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yano Y. Blood pressure management in an ecosystem context. Hypertens Res. 2020;43:989–94.

    Article  PubMed  Google Scholar 

  68. Umishio W, Ikaga T, Kario K, Fujino Y, Suzuki M, Ando S, et al. Role of housing in blood pressure control: a review of evidence from the Smart Wellness Housing survey in Japan. Hypertens Res. 2023;46:9–18.

    Article  PubMed  Google Scholar 

  69. Kanegae H, Suzuki K, Fukatani K, Ito T, Harada N, Kario K. Highly precise risk prediction model for new-onset hypertension using artificial intelligence techniques. J Clin Hypertens (Greenwich). 2020;22:445–50.

    Article  PubMed  Google Scholar 

  70. Koshimizu H, Kojima R, Kario K, Okuno Y. Prediction of blood pressure variability using deep neural networks. Int J Med Inf. 2020;136:104067.

    Article  Google Scholar 

  71. Krittanawong C, Bomback AS, Baber U, Bangalore S, Messerli FH, Wilson, et al. Future Direction for Using Artificial Intelligence to Predict and Manage Hypertension. Curr Hypertens Rep. 2018;20:75.

    Article  PubMed  Google Scholar 

  72. Kario K, Nomura A, Harada N, Okura A, Nakagawa K, Tanigawa T, et al. Efficacy of a digital therapeutics system in the management of essential hypertension: the HERB-DH1 pivotal trial. Eur Heart J. 2021;42:4111–22.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kario K, Nomura A, Harada N, Tanigawa T, So R, Nakagawa K, et al. A multicenter clinical trial to assess the efficacy of the digital therapeutics for essential hypertension: Rationale and design of the HERB-DH1 trial. J Clin Hypertens (Greenwich). 2020;22:1713–22.

    Article  PubMed  Google Scholar 

  74. Nomura A, Tanigawa T, Kario K, Igarashi A. Cost-effectiveness of digital therapeutics for essential hypertension. Hypertens Res. 2022;45:1538–48.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kario K, Nomura A, Kato A, Harada N, Tanigawa T, So R, et al. Digital therapeutics for essential hypertension using a smartphone application: A randomized, open-label, multicenter pilot study. J Clin Hypertens (Greenwich). 2021;23:923–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This review manuscript refers the part of the findings of researches supported by Omron Healthcare Co., A&D Co. and CureApp. Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuomi Kario.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kario, K. Digital hypertension towards to the anticipation medicine. Hypertens Res 46, 2503–2512 (2023). https://doi.org/10.1038/s41440-023-01409-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01409-5

Keywords

This article is cited by

Search

Quick links