Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Fast track – ISH2022 KYOTO
  • Published:

Mechanisms of mineralocorticoid receptor-associated hypertension in diabetes mellitus: the role of O-GlcNAc modification

A Correction to this article was published on 13 January 2023

A Comment to this article was published on 15 November 2022

This article has been updated

Abstract

This study investigated the mechanism underlying the beneficial effects of mineralocorticoid receptor (MR) antagonists in patients with resistant hypertension and diabetic nephropathy by examining post-translational modification of the MR by O-linked-N-acetylglucosamine (O-GlcNAc), which is strongly associated with type 2 diabetes. Coimmunoprecipitation assays in HEK293T cells showed that MR is a target of O-GlcNAc modification (O-GlcNAcylation). The expression levels and transcriptional activities of the receptor increased in parallel with its O-GlcNAcylation under high-glucose conditions. Liquid chromatography–tandem mass spectrometry revealed O-GlcNAcylation of the MR at amino acids 295–307. Point mutations in those residues decreased O-GlcNAcylation, and both the protein levels and transcriptional activities of MR. In db/db mouse kidneys, MR protein levels increased in parallel with overall O-GlcNAc levels of the tissue, accompanied by increased SGK1 mRNA levels. The administration of 6-diazo-5-oxo-L-norleucin, an inhibitor of O-GlcNAcylation, reduced tissue O-GlcNAc levels and MR protein levels in db/db mice. Thus, our study showed that O-GlcNAcylation of the MR directly increases protein levels and transcriptional activities of the receptor under high-glucose conditions in vitro and in vivo. These findings provide a novel mechanism of MR as a target for prevention of complications associated with diabetes mellitus.

Role of O-linked-N-acetylglucosamine modification (O-GlcNAcylation) in mineralocorticoid receptor (MR) expression and transcriptional activity. Aldosterone binding promotes the proteasomal degradation of MR. O-GlcNAcylation of MR inhibits ubiquitin attachment to the MR and interferes with the receptor’s aldosterone-induced proteasomal degradation. As a result, O-GlcNAcylation increases the sensitivity of the MR to aldosterone and exacerbates aldosterone-associated complications (resistant hypertension, diabetic nephropathy and cardiovascular diseases).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Pascual-Le Tallec L, Lombes M. The mineralocorticoid receptor: a journey exploring its diversity and specificity of action. Mol Endocrinol. 2005;19:2211–21.

    Article  CAS  Google Scholar 

  2. Viengchareun S, Le Menuet D, Martinerie L, Munier M, Pascual-Le Tallec L, Lombes M. The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nucl Recept Signal. 2007;5:e012.

    Article  Google Scholar 

  3. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.

    Article  CAS  Google Scholar 

  4. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.

    Article  CAS  Google Scholar 

  5. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21.

    Article  CAS  Google Scholar 

  6. Nishizaka MK, Zaman MA, Calhoun DA. Efficacy of low-dose spironolactone in subjects with resistant hypertension. Am J Hypertens. 2003;16:925–30.

    Article  CAS  Google Scholar 

  7. Shibata H, Itoh H. Mineralocorticoid receptor-associated hypertension and its organ damage: clinical relevance for resistant hypertension. Am J Hypertens. 2012;25:514–23.

    Article  CAS  Google Scholar 

  8. Mehdi UF, Adams-Huet B, Raskin P, Vega GL, Toto RD. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J Am Soc Nephrol. 2009;20:2641–50.

    Article  CAS  Google Scholar 

  9. Nielsen SE, Persson F, Frandsen E, Sugaya T, Hess G, Zdunek D, et al. Spironolactone diminishes urinary albumin excretion in patients with type 1 diabetes and microalbuminuria: a randomized placebo-controlled crossover study. Diabet Med. 2012;29:e184–190.

    Article  CAS  Google Scholar 

  10. Schjoedt KJ, Rossing K, Juhl TR, Boomsma F, Tarnow L, Rossing P, et al. Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int. 2006;70:536–42.

    Article  CAS  Google Scholar 

  11. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383:2219–29.

    Article  CAS  Google Scholar 

  12. Ito S, Kashihara N, Shikata K, Nangaku M, Wada T, Okuda Y, et al. Esaxerenone (CS-3150) in patients with type 2 diabetes and microalbuminuria (ESAX-DN). Clin J Am Soc Nephrol. 2020;15:1715–27.

    Article  CAS  Google Scholar 

  13. Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med. 2021;385:2252–63.

    Article  CAS  Google Scholar 

  14. Yokota K, Shibata H, Kurihara I, Kobayashi S, Suda N, Murai-Takeda A, et al. Coactivation of the N-terminal transactivation of mineralocorticoid receptor by Ubc9. J Biol Chem. 2007;282:1998–2010.

    Article  CAS  Google Scholar 

  15. Murai-Takeda A, Shibata H, Kurihara I, Kobayashi S, Yokota K, Suda N, et al. NF-YC functions as a corepressor of agonist-bound mineralocorticoid receptor. J Biol Chem. 2010;285:8084–93.

    Article  CAS  Google Scholar 

  16. Hayashi T, Shibata H, Kurihara I, Yokota K, Mitsuishi Y, Ohashi K, et al. High glucose stimulates mineralocorticoid receptor transcriptional activity through the protein kinase C β signaling. Int Heart J. 2017;58:794–802.

    Article  CAS  Google Scholar 

  17. Mitsuishi Y, Shibata H, Kurihara I, Kobayashi S, Yokota K, Murai-Takeda A, et al. Epidermal growth factor receptor/extracellular signal-regulated kinase pathway enhances mineralocorticoid receptor transcriptional activity through protein stabilization. Mol Cell Endocrinol. 2018;473:89–99.

    Article  CAS  Google Scholar 

  18. Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446:1017–22.

    Article  CAS  Google Scholar 

  19. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 2011;80:825–58.

    Article  CAS  Google Scholar 

  20. Issad T, Masson E, Pagesy P. O-GlcNAc modification, insulin signaling and diabetic complications. Diabetes Metab. 2010;36:423–35.

    Article  CAS  Google Scholar 

  21. Vosseller K, Wells L, Lane MD, Hart GW. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci USA. 2002;99:5313–8.

    Article  CAS  Google Scholar 

  22. Parker GJ, Lund KC, Taylor RP, McClain DA. Insulin resistance of glycogen synthase mediated by o-linked N-acetylglucosamine. J Biol Chem. 2003;278:10022–7.

    Article  CAS  Google Scholar 

  23. Jiang MS, Hart GW. A subpopulation of estrogen receptors are modified by O-linked N-acetylglucosamine. J Biol Chem. 1997;272:2421–8.

    Article  CAS  Google Scholar 

  24. James LR, Tang D, Ingram A, Ly H, Thai K, Cai L, et al. Flux through the hexosamine pathway is a determinant of nuclear factor kappaB- dependent promoter activation. Diabetes. 2002;51:1146–56.

    Article  CAS  Google Scholar 

  25. Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J, Hunt DF, et al. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem. 2008;283:16283–92.

    Article  CAS  Google Scholar 

  26. Anthonisen EH, Berven L, Holm S, Nygard M, Nebb HI, Gronning-Wang LM. Nuclear receptor liver X receptor is O-GlcNAc-modified in response to glucose. J Biol Chem. 2010;285:1607–15.

    Article  CAS  Google Scholar 

  27. Kurihara I, Shibata H, Kobayashi S, Suda N, Ikeda Y, Yokota K, et al. Ubc9 and protein inhibitor of activated STAT 1 activate chicken ovalbumin upstream promoter-transcription factor I-mediated human CYP11B2 gene transcription. J Biol Chem. 2005;280:6721–30.

    Article  CAS  Google Scholar 

  28. Kobayashi S, Shibata H, Yokota K, Suda N, Murai A, Kurihara I, et al. FHL2, UBC9, and PIAS1 are novel estrogen receptor alpha-interacting proteins. Endocr Res. 2004;30:617–21.

    Article  CAS  Google Scholar 

  29. Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983;11:1475–89.

    Article  CAS  Google Scholar 

  30. Yokota K, Shibata H, Kurihara I, Kobayashi S, Murai-Takeda A, Itoh H. CASZ1b is a novel transcriptional corepressor of mineralocorticoid receptor. Hypertens Res. 2021;44:407–16.

    Article  CAS  Google Scholar 

  31. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9.

    Article  CAS  Google Scholar 

  32. Zennaro MC, Souque A, Viengchareun S, Poisson E, Lombes M. A new human MR splice variant is a ligand-independent transactivator modulating corticosteroid action. Mol Endocrinol. 2001;15:1586–98.

    Article  CAS  Google Scholar 

  33. Haltiwanger RS, Grove K, Philipsberg GA. Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-beta-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate. J Biol Chem. 1998;273:3611–7.

    Article  CAS  Google Scholar 

  34. Faresse N, Ruffieux-Daidie D, Salamin M, Gomez-Sanchez CE, Staub O. Mineralocorticoid receptor degradation is promoted by Hsp90 inhibition and the ubiquitin-protein ligase CHIP. Am J Physiol Ren Physiol. 2010;299:F1462–1472.

    Article  CAS  Google Scholar 

  35. Han I, Oh ES, Kudlow JE. Responsiveness of the state of O-linked N-acetylglucosamine modification of nuclear pore protein p62 to the extracellular glucose concentration. Biochem J. 2000;350(Pt 1):109–14.

    Article  CAS  Google Scholar 

  36. Fuse H, Kitagawa H, Kato S. Characterization of transactivational property and coactivator mediation of rat mineralocorticoid receptor activation function-1 (AF-1). Mol Endocrinol. 2000;14:889–99.

    Article  CAS  Google Scholar 

  37. Pascual-Le Tallec L, Kirsh O, Lecomte MC, Viengchareun S, Zennaro MC, Dejean A, et al. Protein inhibitor of activated signal transducer and activator of transcription 1 interacts with the N-terminal domain of mineralocorticoid receptor and represses its transcriptional activity: implication of small ubiquitin-related modifier 1 modification. Mol Endocrinol. 2003;17:2529–42.

    Article  CAS  Google Scholar 

  38. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84:491–5.

    Article  CAS  Google Scholar 

  39. Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse. Science. 1966;153:1127–8.

    Article  CAS  Google Scholar 

  40. Ovejera AA, Houchens DP, Catane R, Sheridan MA, Muggia FM.Efficacy of 6-diazo-5-oxo-L-norleucine and N-[N-gamma-glutamyl-6-diazo-5-oxo-norleucinyl]-6-diazo-5-oxo-norleucine against experimental tumors in conventional and nude mice.Cancer Res.1979;39:3220–4.

    CAS  Google Scholar 

  41. Shelton LM, Huysentruyt LC, Seyfried TN. Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. International journal of cancer. J Int Cancer. 2010;127:2478–85.

    Article  CAS  Google Scholar 

  42. Tzuman YC, Sapoznik S, Granot D, Nevo N, Neeman M. Peritoneal adhesion and angiogenesis in ovarian carcinoma are inversely regulated by hyaluronan: the role of gonadotropins. Neoplasia. 2010;12:51–60.

    Article  CAS  Google Scholar 

  43. Park SY, Kim HS, Kim NH, Ji S, Cha SY, Kang JG, et al. Snail1 is stabilized by O-GlcNAc modification in hyperglycaemic condition. EMBO J. 2010;29:3787–96.

    Article  CAS  Google Scholar 

  44. Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol. 2006;8:1074–83.

    Article  CAS  Google Scholar 

  45. Ruan H-B, Nie Y, Yang X. Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol Cell Proteom. 2013;12:3489–97.

    Article  CAS  Google Scholar 

  46. Hirschberg D, Jagerbrink T, Samskog J, Gustafsson M, Stahlberg M, Alvelius G, et al. Detection of phosphorylated peptides in proteomic analyses using microfluidic compact disk technology. Anal Chem. 2004;76:5864–71.

    Article  CAS  Google Scholar 

  47. Martinez F, Mansego ML, Escudero JC, Redon J, Chaves FJ. Association of a mineralocorticoid receptor gene polymorphism with hypertension in a Spanish population. Am J Hypertens. 2009;22:649–55.

    Article  CAS  Google Scholar 

  48. Kuningas M, de Rijk RH, Westendorp RG, Jolles J, Slagboom PE, van Heemst D. Mental performance in old age dependent on cortisol and genetic variance in the mineralocorticoid and glucocorticoid receptors. Neuropsychopharmacology. 2007;32:1295–301.

    Article  CAS  Google Scholar 

  49. Cai T, Ke Q, Fang Y, Wen P, Chen H, Yuan Q, et al. Sodium–glucose cotransporter 2 inhibition suppresses HIF-1α-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice. Cell Death Dis. 2020;11:390.

    Article  CAS  Google Scholar 

  50. Li J, Liu H, Takagi S, Nitta K, Kitada M, Srivastava SP, et al. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight. 2020;5:e129034.

    Article  Google Scholar 

  51. Drumm K, Kress TR, Gassner B, Krug AW, Gekle M. Aldosterone stimulates activity and surface expression of NHE3 in human primary proximal tubule epithelial cells (RPTEC). Cell Physiol Biochem. 2006;17:21–28.

    Article  CAS  Google Scholar 

  52. Pergher PS, Leite-Dellova D. Mello-Aires Md. Direct action of aldosterone on bicarbonate reabsorption in in vivo cortical proximal tubule. Am J Physiol-Ren Physiol. 2009;296:F1185–F1193.

    Article  CAS  Google Scholar 

  53. Leite-Dellova DCA, Malnic G, Mello-Aires M. Genomic and nongenomic stimulatory effect of aldosterone on H+-ATPase in proximal S3 segments. Am J Physiol-Ren Physiol. 2011;300:F682–F691.

    Article  CAS  Google Scholar 

  54. Salyer SA, Parks J, Barati MT, Lederer ED, Clark BJ, Klein JD, et al. Aldosterone regulates Na+, K+ ATPase activity in human renal proximal tubule cells through mineralocorticoid receptor. Biochimica et Biophysica Acta (BBA) - Mol Cell Res. 2013;1833:2143–52.

    Article  CAS  Google Scholar 

  55. Degrell P, Cseh J, Mohas M, Molnar GA, Pajor L, Chatham JC, et al. Evidence of O-linked N-acetylglucosamine in diabetic nephropathy. Life Sci. 2009;84:389–93.

    Article  CAS  Google Scholar 

  56. Guo C, Martinez-Vasquez D, Mendez GP, Toniolo MF, Yao TM, Oestreicher EM, et al. Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus. Endocrinology. 2006;147:5363–73.

    Article  CAS  Google Scholar 

  57. Lee SH, Yoo TH, Nam BY, Kim DK, Li JJ, Jung DS, et al. Activation of local aldosterone system within podocytes is involved in apoptosis under diabetic conditions. Am J Physiol Ren Physiol. 2009;297:F1381–1390.

    Article  CAS  Google Scholar 

  58. Andrali SS, Qian Q, Ozcan S. Glucose mediates the translocation of NeuroD1 by O-linked glycosylation. J Biol Chem. 2007;282:15589–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (to HS, IK, and RJ), Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research (to HS and IK), and grant from the Smoking Research Foundation (to HI and HS). We are grateful to Dr. Bert W.O’Malley, Dr. Christie P. Thomas and Dr. Shigeaki Kato for generously providing plasmid DNAs, Ryoji Fujiki (Kazusa DNA Research Institute) for MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Shibata.

Ethics declarations

Conflict of interest

HS has an honorarium from Daiichi-Sankyo Company, Mochida Pharmaceuticals, Astrazeneca, Novartis Pharma, Bayer, and Astellas. HS also received scholarships from Chugai and Bayer. Other authors have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: After publication, I found a mistake in the description about the dosage of 6-diazo-5-oxo-L-norleucine (DON) in animal studies. I made a mistake in writing the unit of the reagent. I wrote it as 3 μg/kg, but it should have been 3 μg/g. There are three errors regarding units in the methods, results and caption of Fig. 5E. Please refer to the corrigenda on the next page.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, R., Shibata, H., Kurihara, I. et al. Mechanisms of mineralocorticoid receptor-associated hypertension in diabetes mellitus: the role of O-GlcNAc modification. Hypertens Res 46, 19–31 (2023). https://doi.org/10.1038/s41440-022-01036-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-01036-6

Keywords

This article is cited by

Search

Quick links