Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IFN-λs inhibit Hantaan virus infection through the JAK-STAT pathway and expression of Mx2 protein

Abstract

Hantaan virus (HTNV), member of the newly defined Hantaviridae family, within the order Bunyavirales, can cause a hemorrhagic fever with renal syndrome with high fatality rates in humans. However, no specific antiviral agents are currently available for HTNV infection approved by the US Food and Drug Administration. Although interferon lambdas (IFN-λs) have been shown to induce an antiviral state against HTNV, the molecular mechanisms remain to be determined. In this study, we found that IFN-λs exerted its anti-HTNV effect by activating Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathway-mediated antiviral immunity in A549 cells. Simultaneously, IFN-λs downregulated suppressor of cytokine signaling proteins, which are the known negative feedback regulators of the JAK-STAT signaling pathway. Additionally, we demonstrated the role of IFN-λs-induced myxovirus resistance 2 (Mx2, also known as MxB) protein as a potential inhibitor for HTNV infection. These findings indicate that IFN-λs play an important role in cellular defenses against HTNV infection at an early stage and that human Mx2 may represent a potential therapeutic target for HTNV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rissanen I, Stass R, Zeltina A, Li S, Hepojoki J, Harlos K et al. Structural transitions of the conserved and metastable hantaviral glycoprotein envelope. J Virol. 2017; 91:e00378–17.

  2. Muyangwa M, Martynova EV, Khaiboullina SF, Morzunov SP, Rizvanov AA. Hantaviral proteins: structure, functions, and role in hantavirus infection. Front Microbiol. 2015;6:1326.

    Article  Google Scholar 

  3. Jonsson CB, Hooper J, Mertz G. Treatment of hantavirus pulmonary syndrome. Antivir Res. 2008;78:162–9.

    Article  CAS  Google Scholar 

  4. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4:69–77.

    Article  CAS  Google Scholar 

  5. Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, et al. A variant upstream of IFNL3 (IL-28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet. 2013;45:164–71.

    Article  CAS  Google Scholar 

  6. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003;4:63–8.

    Article  CAS  Google Scholar 

  7. Donnelly RP, Sheikh F, Kotenko SV, Dickensheets H. The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. J Leukoc Biol. 2004;76:314–21.

    Article  CAS  Google Scholar 

  8. Zhou Z, Hamming OJ, Ank N, Paludan SR, Nielsen AL, Hartmann R. Type III Interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J Virol. 2007;81:7749–58.

    Article  CAS  Google Scholar 

  9. George PM, Badiger R, Alazawi W, Foster GR, Mitchell JA. Pharmacology and therapeutic potential of interferons. Pharmacol Ther. 2012;135:44–53.

    Article  CAS  Google Scholar 

  10. Miller DM, Klucher KM, Freeman JA, Hausman DF, Fontana D, Williams DE. Interferon lambda as a potential new therapeutic for hepatitis C. Ann NY Acad Sci. 2009;1182:80–7.

    Article  CAS  Google Scholar 

  11. Lin FC, Young HA. Interferons: success in anti-viral immunotherapy. Cytokine Growth Factor Rev. 2014;25:369–76.

    Article  CAS  Google Scholar 

  12. Nelson M, Rubio R, Lazzarin A, Romanova S, Luetkemeyer A, Conway B, et al. Safety and efficacy of pegylated interferon-lambda, ribavirin, and daclatasvir in HCV and HIV-coinfected patients. J Interferon Cytokine Res. 2017;37:103–11.

    Article  CAS  Google Scholar 

  13. Galmozzi E, Vigano M, Lampertico P. Systematic review with meta-analysis: do interferon lambda 3 polymorphisms predict the outcome of interferon-therapy in hepatitis B infection? Aliment Pharmacol Ther. 2014;39:569–78.

    Article  CAS  Google Scholar 

  14. Boisvert M, Shoukry NH. Type III interferons in hepatitis C virus infection. Front Immunol. 2016;7:628.

    Article  Google Scholar 

  15. Yamauchi S, Takeuchi K, Chihara K, Honjoh C, Kato Y, Yoshiki H, et al. STAT1 is essential for the inhibition of hepatitis C virus replication by interferon-lambda but not by interferon-alpha. Sci Rep. 2016;6:38336.

    Article  CAS  Google Scholar 

  16. Griffiths SJ, Koegl M, Boutell C, Zenner HL, Crump CM, Pica F, et al. A systematic analysis of host factors reveals a Med23–interferon–lambda regulatory axis against herpes simplex virus type 1 replication. PLoS Pathog. 2013;9:e1003514.

    Article  CAS  Google Scholar 

  17. Zhou L, Li JL, Zhou Y, Liu JB, Zhuang K, Gao JF, et al. Induction of interferon-lambda contributes to TLR3 and RIG-I activation-mediated inhibition of herpes simplex virus type 2 replication in human cervical epithelial cells. Mol Hum Reprod. 2015;21:917–29.

    Article  CAS  Google Scholar 

  18. Hou W, Wang X, Ye L, Zhou L, Yang ZQ, Riedel E, et al. Lambda interferon inhibits human immunodeficiency virus type 1 infection of macrophages. J Virol. 2009;83:3834–42.

    Article  CAS  Google Scholar 

  19. Liu MQ, Zhou DJ, Wang X, Zhou W, Ye L, Li JL, et al. IFN-lambda3 inhibits HIV infection of macrophages through the JAK-STAT pathway. PLoS ONE. 2012;7:e35902.

    Article  CAS  Google Scholar 

  20. Chen J, Liang Y, Yi P, Xu L, Hawkins HK, Rossi SL, et al. Outcomes of congenital Zika disease depend on timing of infection and maternal–fetal interferon action. Cell Rep. 2017;21:1588–99.

    Article  CAS  Google Scholar 

  21. Stoltz M, Ahlm C, Lundkvist A, Klingstrom J. Lambda interferon (IFN-lambda) in serum is decreased in hantavirus-infected patients, and in vitro-established infection is insensitive to treatment with all IFNs and inhibits IFN-gamma-induced nitric oxide production. J Virol. 2007;81:8685–91.

    Article  CAS  Google Scholar 

  22. Syedbasha M, Egli A. Interferon lambda: modulating immunity in infectious diseases. Front Immunol. 2017;8:119.

    Article  Google Scholar 

  23. Ank N, Paludan SR. Type III IFNs: new layers of complexity in innate antiviral immunity. Biofactors. 2009;35:82–87.

    Article  CAS  Google Scholar 

  24. Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, et al. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol. 2014;15:717–26.

    Article  CAS  Google Scholar 

  25. Krebs DL, Hilton DJ. SOCS proteins: negative regulators of cytokine signaling. Stem Cells. 2001;19:378–87.

    Article  CAS  Google Scholar 

  26. Blumer T, Coto-Llerena M, Duong FHT, Heim MH. SOCS1 is an inducible negative regulator of interferon lambda (IFN-lambda)-induced gene expression in vivo. J Biol Chem. 2017;292:17928–38.

    Article  CAS  Google Scholar 

  27. Wei H, Wang S, Chen Q, Chen Y, Chi X, Zhang L, et al. Suppression of interferon lambda signaling by SOCS1 results in their excessive production during influenza virus infection. PLoS Pathog. 2014;10:e1003845.

    Article  Google Scholar 

  28. Liu B, Chen S, Guan Y, Chen L. Type III interferon induces distinct SOCS1 expression pattern that contributes to delayed but prolonged activation of Jak/STAT signaling pathway: implications for treatment non-response in HCV patients. PLoS ONE. 2015;10:e0133800.

    Article  Google Scholar 

  29. Stoltz M, Klingstrom J. Alpha/beta interferon (IFN-/)-independent induction of IFN- 1 (interleukin-29) in response to hantaan virus infection. J Virol. 2010;84:9140–8.

    Article  CAS  Google Scholar 

  30. Haller O, Kochs G. Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res. 2011;31:79–87.

    Article  CAS  Google Scholar 

  31. Oelschlegel R, Kruger DH, Rang A. MxA-independent inhibition of Hantaan virus replication induced by type I and type II interferon in vitro. Virus Res. 2007;127:100–5.

    Article  CAS  Google Scholar 

  32. Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC, Schaller T, et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature. 2013;502:559–62.

    Article  CAS  Google Scholar 

  33. Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, et al. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature. 2013;502:563–6.

    Article  CAS  Google Scholar 

  34. Liu Z, Pan Q, Ding S, Qian J, Xu F, Zhou J, et al. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe. 2013;14:398–410.

    Article  CAS  Google Scholar 

  35. Fricke T, White TE, Schulte B, de Souza Aranha Vieira DA, Dharan A, Campbell EM, et al. MxB binds to the HIV-1 core and prevents the uncoating process of HIV-1. Retrovirology. 2014;11:68.

    Article  Google Scholar 

  36. Liu SY, Sanchez DJ, Aliyari R, Lu S, Cheng G. Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci USA. 2012;109:4239–44.

    Article  CAS  Google Scholar 

  37. Durbin RK, Kotenko SV, Durbin JE. Interferon induction and function at the mucosal surface. Immunol Rev. 2013;255:25–39.

    Article  Google Scholar 

  38. Mahlakoiv T, Hernandez P, Gronke K, Diefenbach A, Staeheli P. Leukocyte-derived IFN-alpha/beta and epithelial IFN-lambda constitute a compartmentalized mucosal defense system that restricts enteric virus infections. PLoS Pathog. 2015;11:e1004782.

    Article  Google Scholar 

  39. Hermant P, Michiels T. Interferon-lambda in the context of viral infections: production, response and therapeutic implications. J Innate Immun. 2014;6:563–74.

    Article  CAS  Google Scholar 

  40. Voigt EA, Yin J. Kinetic differences and synergistic antiviral effects between type I and type III interferon signaling indicate pathway independence. J Interferon Cytokine Res. 2015;35:734–47.

    Article  CAS  Google Scholar 

  41. Kraus AA, Raftery MJ, Giese T, Ulrich R, Zawatzky R, Hippenstiel S, et al. Differential antiviral response of endothelial cells after infection with pathogenic and nonpathogenic hantaviruses. J Virol. 2004;78:6143–50.

    Article  CAS  Google Scholar 

  42. Alff PJ, Gavrilovskaya IN, Gorbunova E, Endriss K, Chong Y, Geimonen E, et al. The pathogenic NY-1 hantavirus G1 cytoplasmic tail inhibits RIG−I− and TBK-1-directed interferon responses. J Virol. 2006;80:9676–86.

    Article  CAS  Google Scholar 

  43. Alff PJ, Sen N, Gorbunova E, Gavrilovskaya IN, Mackow ER. The NY-1 hantavirus Gn cytoplasmic tail coprecipitates TRAF3 and inhibits cellular interferon responses by disrupting TBK1-TRAF3 complex formation. J Virol. 2008;82:9115–22.

    Article  CAS  Google Scholar 

  44. Geimonen E, Neff S, Raymond T, Kocer SS, Gavrilovskaya IN, Mackow ER. Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses. Proc Natl Acad Sci. 2002;99:13837–42.

    Article  CAS  Google Scholar 

  45. Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol. 2007;7:454–65.

    Article  CAS  Google Scholar 

  46. Porritt RA, Hertzog PJ. Dynamic control of type I IFN signalling by an integrated network of negative regulators. Trends Immunol. 2015;36:150–60.

    Article  CAS  Google Scholar 

  47. Kristiansen H, Gad HH, Eskildsen-Larsen S, Despres P, Hartmann R. The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J Interferon Cytokine Res. 2011;31:41–7.

    Article  CAS  Google Scholar 

  48. Pichlmair A, Lassnig C, Eberle CA, Gorna MW, Baumann CL, Burkard TR, et al. IFIT1 is an antiviral protein that recognizes 5′-triphosphate RNA. Nat Immunol. 2011;12:624–30.

    Article  CAS  Google Scholar 

  49. Haller O, Stertz S, Kochs G. The Mx GTPase family of interferon-induced antiviral proteins. Microbes Infect. 2007;9:1636–43.

    Article  CAS  Google Scholar 

  50. Jin HKYK, Takada A, Ogino M, Asano A, Arikawa J, Watanabe T. Mouse Mx2 protein inhibits hantavirus but not influenza virus replication. Arch Virol. 2001;146:41–9.

    Article  CAS  Google Scholar 

  51. Aebi M, Fah J, Hurt N, Samuel CE, Thomis D, Bazzigher L, et al. cDNA structures and regulation of two interferon-induced human Mx proteins. Mol Cell Biol. 1989;9:5062–72.

    Article  CAS  Google Scholar 

  52. Deng H-y, Luo F, Shi L-q, Zhong Q, Liu Y-j, Yang Z-q. Efficacy of arbidol on lethal hantaan virus infections in suckling mice and in vitro. Acta Pharmacol Sin. 2009;30:1015–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Michael H. Malim (School of Medicine at Guy’s, King’s College, and St Thomas’ Hospitals) for providing the pAHM-shCtrl (CG257), pAHM-shMx2-1 (CG267), and pAHM-shMx2-2 (CG-268) vectors of silencing Mx2. The editorial services provided by Professor Wen-zhe Ho (Temple University School of Medicine) are greatly appreciated. This work was supported by research grants from the National Natural Science Foundation of China (No. 81271819) to WH and (No. 81473036) to YZ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Feng or Wei Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Ning Li, Fan Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Luo, F., Chen, Q. et al. IFN-λs inhibit Hantaan virus infection through the JAK-STAT pathway and expression of Mx2 protein. Genes Immun 20, 234–244 (2019). https://doi.org/10.1038/s41435-018-0028-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-018-0028-x

This article is cited by

Search

Quick links