Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of siderophores blocking infection of Pseudomonas aeruginosa from Kitasatospora sp. LS1784

Abstract

Siderophores are low-molecular-mass, high-affinity chelators of Fe3+ ions that are critical for the survival of bacteria in ferric deficient environment. Exogenous siderophores are potential bacteriostat by disrupting the iron-uptake process of pathogens. In our previous work to discover siderophores, strain LS1784 was previously predicted to produce new catecholate-type siderophores by genome analysis but no compounds were obtained. In this work, we reclassified train LS1784 as Kitasatospora sp. LS1784 according to the genome phylogenetic analysis. Then guided by CAS colorimetric assay and molecular network analysis, four catecholate-type siderophores were isolated from the ethyl acetate extract of LS1784 which were coincident with the initial prediction. Notably, compounds 2 and 3 were reported for the first time. Following activity screening, compound 3 showed sufficient anti-Pseudomonas aeruginosa-infection activity in Caenorhabditis elegans infection models, whereas all compounds exhibited no antimicrobial activity. These results indicated that compound 3 can enhance the survival of P. aeruginosa infecting C. elegans by reducing the virulence of P. aeruginosa rather than killing P. aeruginosa, which aligns with our previous findings. Moreover, these findings highlight the effectiveness of comprehensive approaches, including genome mining, CAS (Chromeazurol S) testing, and molecular network (MN) analysis, in identifying potential siderophores, thereby expanding the siderophores arsenal in bacteria for the development of anti-infective drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.

    Article  CAS  PubMed  Google Scholar 

  2. Qadri H, Haseeb Shah A, Mudasir Ahmad S, Alshehri B, Almilaibary A, Ahmad Mir M. Natural products and their semi-synthetic derivatives against antimicrobial-resistant human pathogenic bacteria and fungi. Saudi J Biol Sci. 2022;29:103376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van den Broek PJ. Antimicrobial drugs, microorganisms, and phagocytes. Rev Infect Dis. 1989;11:213–45.

    Article  PubMed  Google Scholar 

  4. Chin KW, Michelle THL, Luang-In V, Ma NL. An overview of antibiotic and antibiotic resistance. Environ Adv 2022;11:100331.

  5. Qi YK, Tang X, Wei NN, Pang CJ, Du SS, Wang K. Discovery, synthesis, and optimization of teixobactin, a novel antibiotic without detectable bacterial resistance. J Pept Sci. 2022;28:e3428.

    Article  CAS  PubMed  Google Scholar 

  6. Dang X, Wang G. Spotlight on the selected new antimicrobial innate immune peptides discovered during 2015-2019. Curr Top Med Chem. 2020;20:2984–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Z, Koirala B, Hernandez Y, Zimmerman M, Park S, Perlin DS, et al. A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature. 2022;601:606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Z, Koirala B, Hernandez Y, Zimmerman M, Brady SF. Bioinformatic prospecting and synthesis of a bifunctional lipopeptide antibiotic that evades resistance. Science. 2022;376:991–6.

    Article  CAS  PubMed  Google Scholar 

  9. Dehbanipour R, Ghalavand Z. Anti-virulence therapeutic strategies against bacterial infections: recent advances. Germs. 2022;12:262–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kalimuthu S, Alshanta OA, Krishnamoorthy AL, Pudipeddi A, Solomon AP, McLean W, et al. Small molecule based anti-virulence approaches against Candida albicans infections. Crit Rev Microbiol. 2022;48:743–69.

    Article  CAS  PubMed  Google Scholar 

  11. Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol. 2000;54:881–941.

    Article  CAS  PubMed  Google Scholar 

  12. Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007;71:413–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bilitewski U, Blodgett JAV, Duhme-Klair AK, Dallavalle S, Laschat S, Routledge A, et al. Chemical and biological aspects of nutritional immunity-perspectives for new anti-infectives that target iron uptake systems. Angew Chem-Int Ed. 2017;56:14360–82.

    Article  CAS  Google Scholar 

  14. Xie F, Dai SW, Zhao Y, Huang P, Yu S, Ren B, et al. Generation of fluorinated amychelin siderophores against Pseudomonas aeruginosa infections by a combination of genome mining and mutasynthesis. Cell Chem Biol. 2020;27:1532–43.

    Article  CAS  PubMed  Google Scholar 

  15. Kautsar SA, Blin K, Shaw S, Weber T, Medema MH. BiG-FAM: the biosynthetic gene cluster families database. Nucleic Acids Res. 2021;49:D490–7.

    Article  CAS  PubMed  Google Scholar 

  16. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 2008;9:75.

    Article  Google Scholar 

  18. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.

    Article  CAS  PubMed  Google Scholar 

  21. Thorell K, Meier-Kolthoff JP, Sjöling Å, Martín-Rodríguez AJ. Whole-genome sequencing redefines Shewanella taxonomy. Front Microbiol. 2019;10:1861.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Retamal-Morales G, Mehnert M, Schwabe R, Tischler D, Zapata C, Chávez R, et al. Detection of arsenic-binding siderophores in arsenic-tolerating Actinobacteria by a modified CAS assay. Ecotoxicol Environ Saf. 2018;157:176–81.

    Article  CAS  PubMed  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16, Revision C.01. In: Gaussian I (ed): Wallingford CT, 2019.

  24. Grimblat N, Zanardi MM, Sarotti AM. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem. 2015;80:12526–34.

    Article  CAS  PubMed  Google Scholar 

  25. Aoyagi T, Hatsu M, Kojima F, Hayashi C, Hamada M, Takeuchi T. Benarthin - A new inhibitor of pyroglutamyl peptidase. 1. Taxonomy, fermentation, isolation and biological-activities. J Antibiot. 1992;45:1079–83.

    Article  CAS  Google Scholar 

  26. Hatsu M, Naganawa H, Aoyagi T, Takeuchi T. Benarthin - A new inhibitor of pyroglutamyl peptidase. 2. Physicochemical properties and structure determination. J Antibiot. 1992;45:1084–7.

    Article  CAS  Google Scholar 

  27. Hatsu M, Tuda M, Muraoka Y, Aoyagi T, Takeuchi T. Benarthin - A new inhibitor of pyroglutamyl peptidase. 3. synthesis and structure-activity-relationships. J Antibiot. 1992;45:1088–95.

    Article  CAS  Google Scholar 

  28. Xu ZX, Li B, Tian Y, Li M, Dong JX, Zhang GJ. Chemical constituents from the aerial parts of Orychophragmus violaceus. Nat Prod Res. 2022;5:1–9.

    CAS  Google Scholar 

  29. Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27:637–57.

    Article  CAS  PubMed  Google Scholar 

  30. Barry SM, Challis GL. Recent advances in siderophore biosynthesis. Curr Opin Chem Biol. 2009;13:205–15.

    Article  CAS  PubMed  Google Scholar 

  31. Timofeeva AM, Galyamova MR, Sedykh SE. Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture. Plants. 2022;11:3065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirienko NV, Kirienko DR, Larkins-Ford J, Wählby C, Ruvkun G, Ausubel FM. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe. 2013;13:406–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Jinwei Ren and Dr. Wenzhao Wang (State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences) are appreciated for their help in measuring the NMR and MS data. This work was supported in part by the National Natural Science Foundation of China grant 22277135 and 82073723.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Liu or Huanqin Dai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Wang, Y., Xie, F. et al. Identification of siderophores blocking infection of Pseudomonas aeruginosa from Kitasatospora sp. LS1784. J Antibiot 77, 4–12 (2024). https://doi.org/10.1038/s41429-023-00675-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00675-2

Search

Quick links