Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Facile preparation of water-soluble multiwalled carbon nanotubes bearing phosphorylcholine groups for heat generation under near-infrared irradiation

Abstract

In the present study, water-soluble molecular complexes between carboxylic acid-functionalized multiwalled carbon nanotubes (MWCNTs) and biocompatible poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) were prepared by hand grinding. MWCNTs could be solubilized in phosphate-buffered saline using this simple method. The suspended concentration of MWCNTs was found to increase with increasing polymer concentration and pH of the solution. Heat generation from the complexes was studied upon irradiation with near-infrared (NIR) radiation at a wavelength of 808 nm. The results demonstrated that MWCNTs absorbed light and generated heat when the molecular complex was irradiated by NIR. The solution temperature increased with increasing MWCNT concentration and irradiation time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saifuddin N, Raziah AZ, Junizah AR. Carbon nanotubes: a review on structure and their interaction with proteins. J Chem. 2013;2013:676815.

    Article  CAS  Google Scholar 

  2. Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013;65:1964–2015.

    Article  CAS  PubMed  Google Scholar 

  3. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand J-P, et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed Engl. 2005;44:6358–62.

    Article  CAS  PubMed  Google Scholar 

  4. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design. J Am Chem Soc. 2007;129:8438–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sahoo NG, Bao H, Pan Y, Pal M, Kakran M, Cheng HKF, et al. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study. Chem Commun. 2011;47:5235–7.

    Article  CAS  Google Scholar 

  6. Liu P. Modification strategies for carbon nanotubes as a drug delivery system. Ind Eng Chem Res. 2013;52:13517–27.

    Article  CAS  Google Scholar 

  7. Alidori S, Asqiriba K, Londero P, Bergkvist M, Leona M, Scheinberg DA, et al. Deploying RNA and DNA with functionalized carbon nanotubes. J Phys Chem C. 2013;117:5982–92.

    Article  CAS  Google Scholar 

  8. Posadas I, Guerra FJ, Cena V. Nonviral vectors for the delivery of small interfering RNAS to the CNS. Nanomedicine 2010;5:1219–36.

    Article  CAS  PubMed  Google Scholar 

  9. Varkouhi AK, Foillard S, Lammers T, Schiffelers RM, Doris E, Hennink WE, et al. SiRNA delivery with functionalized carbon nanotubes. Int J Pharm. 2011;416:419–25.

    Article  CAS  PubMed  Google Scholar 

  10. Yeh I-C, Hummer G. Nucleic acid transport through carbon nanotube membranes. Proc Natl Acad Sci. 2004;101:12177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007;28:344–53.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng T, Pour Shahid Saeed Abadi P, Seo J, Cha B-H, Miccoli B, Li Y-C, et al. Biocompatible carbon nanotube-based hybrid microfiber for implantable electrochemical actuator and flexible electronic applications. ACS Appl Mater Interfaces. 2019;11:20615–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thostenson ET, Ren Z, Chou T-W. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol. 2001;61:1899–912.

    Article  CAS  Google Scholar 

  14. Li C, Thostenson ET, Chou T-W. Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos Sci Technol. 2008;68:1445–52.

    Article  CAS  Google Scholar 

  15. Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS. Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev. 2013;65:1933–50.

    Article  CAS  PubMed  Google Scholar 

  16. Wang J. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis. 2005;17:7–14.

    Article  CAS  Google Scholar 

  17. Veetil JV, Ye K. Development of immunosensors using carbon nanotubes. Biotechnol Prog. 2007;23:517–31.

    Article  CAS  PubMed  Google Scholar 

  18. Feldman AK, Steigerwald ML, Guo X, Nuckolls C. Molecular electronic devices based on single-walled carbon nanotube electrodes. Acc Chem Res. 2008;41:1731–41.

    Article  CAS  PubMed  Google Scholar 

  19. Jensen A, Hauptmann JR, Nygård J, Sadowski J, Lindelof PE. Hybrid devices from single wall carbon nanotubes epitaxially grown into a semiconductor heterostructure. Nano Lett. 2004;4:349–52.

    Article  CAS  Google Scholar 

  20. Salvetat J-P, Bonard J-M, Thomson NH, Kulik AJ, Forró L, Benoit W, et al. Mechanical properties of carbon nanotubes. Appl Phys A. 1999;69:255–60.

    Article  CAS  Google Scholar 

  21. Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon. 1995;33:925–30.

    Article  CAS  Google Scholar 

  22. Chakraborty S, Chattopadhyay J, Peng H, Chen Z, Mukherjee A, Arvidson RS, et al. Surface area measurement of functionalized single-walled carbon nanotubes. J Phys Chem B. 2006;110:24812–5.

    Article  CAS  PubMed  Google Scholar 

  23. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon. 2001;39:507–14.

    Article  CAS  Google Scholar 

  24. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature. 1996;382:54–6.

    Article  CAS  Google Scholar 

  25. Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006;6:96–100.

    Article  CAS  PubMed  Google Scholar 

  26. Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 2001;87:215502.

    Article  CAS  PubMed  Google Scholar 

  27. Saleemi MA, Fouladi Hosseini, Yong M, Chinna PVC, Palanisamy K, Wong NK, et al. Toxicity of carbon nanotubes: molecular mechanisms, signaling cascades, and remedies in biomedical applications. Chem Res Toxicol. 2021;34:24–46.

    Article  CAS  PubMed  Google Scholar 

  28. Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem. 2016;59:8149–67.

    Article  CAS  PubMed  Google Scholar 

  29. Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst. 2005;1:176–82.

    Article  CAS  PubMed  Google Scholar 

  30. Simon-Deckers A, Gouget B, Mayne-L’hermite M, Herlin-Boime N, Reynaud C, Carrière M. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology. 2008;253:137–46.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang T, Amadei CA, Gou N, Lin Y, Lan J, Vecitis CD, et al. Toxicity of single-walled carbon nanotubes (SWCNTs): effect of lengths, functional groups and electronic structures revealed by a quantitative toxicogenomics assay. Environ Sci Nano. 2020;7:1348–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Montes-Fonseca SL, Orrantia-Borunda E, Aguilar-Elguezabal A. González Horta, C.; Talamás-Rohana, P.; Sánchez-Ramírez, B. Cytotoxicity of functionalized carbon nanotubes in J774A macrophages. Nanomedicine Nanotechnology. Biol Med. 2012;8:853–9.

    CAS  Google Scholar 

  33. Zhao Y-L, Stoddart JF. Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res. 2009;42:1161–71.

    Article  CAS  PubMed  Google Scholar 

  34. Dalton AB, Stephan C, Coleman JN, McCarthy B, Ajayan PM, Lefrant S, et al. Selective interaction of a semiconjugated organic polymer with single-wall nanotubes. J Phys Chem B. 2000;104:10012–6.

    Article  CAS  Google Scholar 

  35. Song Y-M, Wang F, Guo G, Luo S-J, Guo R-B. Amphiphilic-polymer-coated carbon nanotubes as promoters for methane hydrate formation. ACS Sustain. Chem Eng. 2017;5:9271–8.

    CAS  Google Scholar 

  36. Tang BZ, Xu H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules. 1999;32:2569–76.

    Article  CAS  Google Scholar 

  37. Kovtyukhova NI, Mallouk TE, Pan L, Dickey EC. Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. J Am Chem Soc. 2003;125:9761–9.

    Article  CAS  PubMed  Google Scholar 

  38. Fan Z, Wei T, Luo G, Wei F. Fabrication and characterization of multi-walled carbon nanotubes-based ink. J Mater Sci. 2005;40:5075–7.

    Article  CAS  Google Scholar 

  39. Rosca ID, Watari F, Uo M, Akasaka T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon. 2005;43:3124–31.

    Article  CAS  Google Scholar 

  40. Marshall MW, Popa-Nita S, Shapter JG. Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process. Carbon. 2006;44:1137–41.

    Article  CAS  Google Scholar 

  41. Suttipong M, Tummala NR, Kitiyanan B, Striolo A. Role of surfactant molecular structure on self-assembly: aqueous SDBS on carbon nanotubes. J Phys Chem C. 2011;115:17286–96.

    Article  CAS  Google Scholar 

  42. Xu F-M, Xu J-P, Ji J, Shen J-C. A novel biomimetic polymer as amphiphilic surfactant for soluble and biocompatible carbon nanotubes (CNTs). Colloids Surf B. 2008;67:67–72.

    Article  CAS  Google Scholar 

  43. Yudasaka M, Yomogida Y, Zhang M, Tanaka T, Nakahara M, Kobayashi N, et al. Near-infrared photoluminescent carbon nanotubes for imaging of brown fat. Sci Rep. 2017;7:44760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ban Q, Bai T, Duan X, Kong J. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater Sci. 2017;5:190–210.

    Article  CAS  PubMed  Google Scholar 

  45. Huang N, Wang H, Zhao J, Lui H, Korbelik M, Zeng H. Single-wall carbon nanotubes assisted photothermal cancer therapy: Animal study with a murine model of squamous cell carcinoma. Lasers Surg Med. 2010;42:638–48.

    Article  PubMed  Google Scholar 

  46. Chatterjee DK, Diagaradjane P, Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv. 2011;2:1001–14.

    Article  CAS  PubMed  Google Scholar 

  47. Eldridge BN, Bernish BW, Fahrenholtz CD, Singh R. Photothermal therapy of glioblastoma multiforme using multiwalled carbon nanotubes optimized for diffusion in extracellular space. ACS Biomater Sci Eng. 2016;2:963–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang M, Wang W, Wu F, Yuan P, Chi C, Zhou N. Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon. 2017;123:70–83.

    Article  CAS  Google Scholar 

  49. Singh R, Torti SV. Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev. 2013;65:2045–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sarkar S, Gurjarpadhye AA, Rylander CG, Nichole Rylander M. Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns. J Biomed Opt. 2011;16:51304.

    Article  CAS  Google Scholar 

  51. Ishihara K. Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J Biomed Mater Res Part A. 2019;107:933–43.

    Article  CAS  Google Scholar 

  52. Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T. et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater. 2004;3:829–36.

    Article  CAS  PubMed  Google Scholar 

  53. Ishihara K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. Langmuir 2019;35:1778–87.

    Article  CAS  PubMed  Google Scholar 

  54. Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci Technol Adv Mater. 2012;13:64101.

    Article  CAS  Google Scholar 

  55. Nguyen TL, Katayama R, Kojima C, Matsumoto A, Ishihara K, Yusa S. Singlet oxygen generation by sonication using a water-soluble fullerene (C60) complex: a potential application for sonodynamic therapy. Polym J. 2020;52:1387–94.

    Article  CAS  Google Scholar 

  56. Mitsukami Y, Donovan MS, Lowe AB, McCormick CL. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via raft. Macromolecules. 2001;34:2248–56.

    Article  CAS  Google Scholar 

  57. Habash RWY, Bansal R, Krewski D, Alhafid HT. Thermal therapy, part 1: an introduction to thermal therapy. Crit Rev Biomed Eng. 2006;34:459–89.

    Article  PubMed  Google Scholar 

  58. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobio. 2006;82:412–7.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by a Grant-in-Aid for Scientific Research (17H03071) from the Japan Society for the Promotion of Science (JSPS), JSPS Bilateral Joint Research Projects (JPJSBP120203509), and the Cooperative Research Program of “Network Joint Research Center for Materials and Devices (20204034).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Yusa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.L., Takai, M., Ishihara, K. et al. Facile preparation of water-soluble multiwalled carbon nanotubes bearing phosphorylcholine groups for heat generation under near-infrared irradiation. Polym J 53, 1001–1009 (2021). https://doi.org/10.1038/s41428-021-00495-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00495-x

Search

Quick links