Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cGAS-STING-YY1 axis accelerates progression of neurodegeneration in a mouse model of Parkinson’s disease via LCN2-dependent astrocyte senescence

Abstract

Recent studies provide clues that astrocyte senescence is correlated with Parkinson’s disease (PD) progression, while little is known about the molecular basis for astrocyte senescence in PD. Here, we found that cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) was upregulated in senescent astrocytes of PD and aged mice. Strikingly, deletion of astrocytic cGAS significantly prevented senescence of astrocytes and neurodegeneration. Furthermore, we identified LCN2 as the effector of cGAS-STING signal by RNA-Seq analysis. Genetic manipulation of LCN2 expression proved the regulation of cGAS-STING-LCN2 axis in astrocyte senescence. Additionally, YY1 was discovered as the transcription factor of LCN2 by chromatin immunoprecipitation. Binding of STING to YY1 impedes nuclear translocation of YY1. Herein, we determine the involvement of the cGAS-STING-YY1-LCN2 signaling cascade in the control of astrocyte senescence and PD progression. Together, this work fills the gap in our understanding of astrocyte senescence, and provides potential targets for delaying PD progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: cGAS-STING signal is activated in senescent astrocytes of MPTP treated mice and aged mice.
Fig. 2: cGAS-STING knockdown prevents senescence of astrocytes in vitro.
Fig. 3: Astrocytic cGAS ablation alleviates PD like pathology via delay of the senescence of astrocytes in MPTP treated mice.
Fig. 4: Identification of LCN2 as an effector target for cGAS-STING-mediated astrocyte senescence.
Fig. 5: STING directly binds to YY1 and prevents YY1 nuclear translocation to increase LCN2 transcription.
Fig. 6: LCN2 is required for cGAS-STING-mediated astrocyte senescence and neurodegeneration in MPTP treated mice.
Fig. 7: cGAS-STING-LCN2 pathway mediates age-related neurodegeneration in aged mice.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36:1–12.

    Article  PubMed  Google Scholar 

  2. Gomez Arevalo G, Jorge R, Garcia S, Scipioni O, Gershanik O. Clinical and pharmacological differences in early- versus late-onset Parkinson’s disease. Mov Disord. 1997;12:277–84.

    Article  CAS  PubMed  Google Scholar 

  3. Diederich NJ, Moore CG, Leurgans SE, Chmura TA, Goetz CG. Parkinson disease with old-age onset: a comparative study with subjects with middle-age onset. Arch Neurol. 2003;60:529–33.

    Article  PubMed  Google Scholar 

  4. Hur EM, Lee BD. LRRK2 at the crossroad of aging and Parkinson’s disease. Genes. 2021;12:505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, cellular senescence and neurodegenerative disease. Int J Mol Sci. 2018;19:2937.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sahu MR, Rani L, Subba R, Mondal AC. Cellular senescence in the aging brain: a promising target for neurodegenerative diseases. Mech Ageing Dev. 2022;204:111675.

    Article  CAS  PubMed  Google Scholar 

  7. Cohen J, Torres C. Astrocyte senescence: evidence and significance. Aging Cell. 2019;18:e12937.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xia ML, Xie XH, Ding JH, Du RH, Hu G. Astragaloside IV inhibits astrocyte senescence: implication in Parkinson’s disease. J Neuroinflammation. 2020;17:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gaikwad S, Puangmalai N, Bittar A, Montalbano M, Garcia S, McAllen S, et al. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer’s disease and frontotemporal dementia. Cell Rep. 2021;36:109419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 2018;562:578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chinta SJ, Woods G, Demaria M, Rane A, Zou Y, McQuade A, et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to parkinson’s disease. Cell Rep. 2018;22:930–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21:501–21.

    Article  CAS  PubMed  Google Scholar 

  13. Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21:548–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–9.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Bai XC, Chen ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity. 2020;53:43–53.

    Article  CAS  PubMed  Google Scholar 

  16. Paul BD, Snyder SH, Bohr VA. Signaling by cGAS-STING in neurodegeneration, neuroinflammation, and aging. Trends Neurosci. 2021;44:83–96.

    Article  CAS  PubMed  Google Scholar 

  17. Yang H, Wang H, Ren J, Chen Q, Chen ZJ. cGAS is essential for cellular senescence. Proc Natl Acad Sci USA. 2017;114:E4612–E20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hou Y, Wei Y, Lautrup S, Yang B, Wang Y, Cordonnier S, et al. NAD(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS-STING. Proc Natl Acad Sci USA. 2021;118:e2011226118.

  19. Guo Q, Chen X, Chen J, Zheng G, Xie C, Wu H, et al. STING promotes senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the NF-kappaB signaling pathway. Cell Death Dis. 2021;12:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu ZL, Sun T, Lu M, Ding JH, Du RH, Hu G. Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson’s disease via promoting mitophagy. Brain Behav Immun. 2019;81:509–22.

    Article  CAS  PubMed  Google Scholar 

  21. Du RH, Sun HB, Hu ZL, Lu M, Ding JH, Hu G. Kir6.1/K-ATP channel modulates microglia phenotypes: implication in Parkinson’s disease. Cell Death Dis. 2018;9:404.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen MM, Hu ZL, Ding JH, Du RH, Hu G. Astrocytic Kir6.1 deletion aggravates neurodegeneration in the lipopolysaccharide-induced mouse model of Parkinson’s disease via astrocyte-neuron cross talk through complement C3-C3R signaling. Brain Behav Immun. 2021;95:310–20.

    Article  CAS  PubMed  Google Scholar 

  23. Han X, Sun S, Sun Y, Song Q, Zhu J, Song N, et al. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy. 2019;15:1860–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du RH, Zhou Y, Xia ML, Lu M, Ding JH, Hu G. alpha-synuclein disrupts the anti-inflammatory role of Drd2 via interfering beta-arrestin2-TAB1 interaction in astrocytes. J Neuroinflammation. 2018;15:258.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wei Y, Lu M, Mei M, Wang H, Han Z, Chen M, et al. Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun. 2020;11:941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jauhari A, Baranov SV, Suofu Y, Kim J, Singh T, Yablonska S, et al. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Invest. 2021;131:3124-36.

  27. Skopelja-Gardner S, An J, Elkon KB. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol. 2022;18:558–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kwon OC, Song JJ, Yang Y, Kim SH, Kim JY, Seok MJ, et al. SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol Med. 2021;13:e13076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Couillin I, Riteau N. STING signaling and sterile inflammation. Front Immunol. 2021;12:753789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chin AC. Neuroinflammation and the cGAS-STING pathway. J Neurophysiol. 2019;121:1087–91.

    Article  CAS  PubMed  Google Scholar 

  31. Ding R, Li H, Liu Y, Ou W, Zhang X, Chai H, et al. Activating cGAS-STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia pyroptosis. J Neuroinflammation. 2022;19:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gasterich N, Bohn A, Sesterhenn A, Nebelo F, Fein L, Kaddatz H, et al. Lipocalin 2 attenuates oligodendrocyte loss and immune cell infiltration in mouse models for multiple sclerosis. Glia 2022;70:2188–206.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta U, Ghosh S, Wallace CT, Shang P, Xin Y, Nair AP, et al. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD. Autophagy 2023;19:92–111.

    Article  CAS  PubMed  Google Scholar 

  34. Kim BW, Jeong KH, Kim JH, Jin M, Kim JH, Lee MG, et al. Pathogenic upregulation of Glial Lipocalin-2 in the Parkinsonian dopaminergic system. J Neurosci. 2016;36:5608–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kang H, Shin HJ, An HS, Jin Z, Lee JY, Lee J, et al. Role of Lipocalin-2 in Amyloid-Beta Oligomer-Induced mouse model of Alzheimer’s disease. Antioxidants. 2021;10:1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song J, Kim OY. Perspectives in Lipocalin-2: emerging biomarker for medical diagnosis and prognosis for Alzheimer’s disease. Clin Nutr Res. 2018;7:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim JH, Ko PW, Lee HW, Jeong JY, Lee MG, Kim JH, et al. Astrocyte-derived lipocalin-2 mediates hippocampal damage and cognitive deficits in experimental models of vascular dementia. Glia 2017;65:1471–90.

    Article  PubMed  Google Scholar 

  38. Wan T, Zhu W, Zhao Y, Zhang X, Ye R, Zuo M, et al. Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice. Nat Commun. 2022;13:1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu R, Wang J, Chen Y, Collier JM, Capuk O, Jin S, et al. NOX activation in reactive astrocytes regulates astrocytic LCN2 expression and neurodegeneration. Cell Death Dis. 2022;13:371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Si Z, Sun L, Wang X. Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomed Pharmacother. 2021;137:111327.

    Article  CAS  PubMed  Google Scholar 

  41. Simmnacher K, Krach F, Schneider Y, Alecu JE, Mautner L, Klein P, et al. Unique signatures of stress-induced senescent human astrocytes. Exp Neurol. 2020;334:113466.

    Article  CAS  PubMed  Google Scholar 

  42. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15:565–81.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grants from the National Key R&D Program of China (No. 2021ZD0202903), the National Natural Science Foundation of China (No. 82273906, No. 81922066, No. 82173797 and No. 81991523).

Author information

Authors and Affiliations

Authors

Contributions

ML conceived and designed the study. RHD designed the study and wrote the paper. SYJ, TT, HY, XMX and CW performed the experiments and analyzed the data. Gang Hu and LC revised the paper. All authors read and approved the final manuscript

Corresponding authors

Correspondence to Ren-Hong Du or Ming Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

The animals used in our study were treated in accordance with protocols approved by the Institutional Animal Care and Use Committee of Nanjing Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, SY., Tian, T., Yao, H. et al. The cGAS-STING-YY1 axis accelerates progression of neurodegeneration in a mouse model of Parkinson’s disease via LCN2-dependent astrocyte senescence. Cell Death Differ 30, 2280–2292 (2023). https://doi.org/10.1038/s41418-023-01216-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01216-y

This article is cited by

Search

Quick links