Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology

Testosterone, sex hormone-binding globulin, insulin-like growth factor-1 and endometrial cancer risk: observational and Mendelian randomization analyses

Abstract

Background

Dysregulation of endocrine pathways related to steroid and growth hormones may modify endometrial cancer risk; however, prospective data on testosterone, sex hormone-binding globulin (SHBG) and insulin-like growth factor (IGF)−1 are limited. To elucidate the role of these hormones in endometrial cancer risk we conducted complementary observational and Mendelian randomization (MR) analyses.

Methods

The observational analyses included 159,702 women (80% postmenopausal) enrolled in the UK Biobank. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models. For MR analyses, genetic variants associated with hormone levels were identified and their association with endometrial cancer (12,906 cases/108,979 controls) was examined using two-sample MR.

Results

In the observational analysis, higher circulating concentrations of total (HR per unit inverse normal scale = 1.38, 95% CI = 1.22–1.57) and free testosterone (HR per unit log scale = 2.07, 95% CI = 1.66–2.58) were associated with higher endometrial cancer risk. An inverse association was found for SHBG (HR per unit inverse normal scale = 0.76, 95% CI = 0.67–0.86). Results for testosterone and SHBG were supported by the MR analyses. No association was found between genetically predicted IGF-1 concentration and endometrial cancer risk.

Conclusions

Our results support probable causal associations between circulating concentrations of testosterone and SHBG with endometrial cancer risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observational and Mendelian randomization estimates for total testosterone, free testosterone, sex hormone-binding globulin (SHBG) and insulin-like growth factor-1 (IGF-1) and endometrial cancer risk.
Fig. 2: Subgroup analyses of association between total testosterone concentration and endometrial cancer risk in the UK Biobank (per unit inverse normal scale).
Fig. 3: Subgroup analyses of association between sex-hormone-binding globulin (SHBG) concentration and endometrial cancer risk in the UK Biobank (per unit inverse normal scale).

Similar content being viewed by others

Data availability

Data used in the MR analyses can be found in supplementary material. Researchers can apply to use the UK Biobank dataset by registering and applying at http://ukbiobank.ac.uk/register-apply/.

References

  1. Allen NE, Key TJ, Dossus L, Rinaldi S, Cust A, Lukanova A, et al. Endogenous sex hormones and endometrial cancer risk in women in the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer. 2008;15:485–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brinton LA, Trabert B, Anderson GL, Falk RT, Felix AS, Fuhrman BJ, et al. Serum estrogens and estrogen metabolites and endometrial cancer risk among postmenopausal women. Cancer Epidemiol Biomark Prev. 2016;25:1081–9.

    Article  CAS  Google Scholar 

  3. Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Manson JE, Li J, et al. A prospective evaluation of insulin and insulin-like growth factor-I as risk factors for endometrial cancer. Cancer Epidemiol Biomark Prev. 2008;17:921–9.

    Article  CAS  Google Scholar 

  4. Lukanova A, Lundin E, Micheli A, Arslan A, Ferrari P, Rinaldi S, et al. Circulating levels of sex steroid hormones and risk of endometrial cancer in postmenopausal women. Int J Cancer. 2004;108:425–32.

    Article  CAS  PubMed  Google Scholar 

  5. Zeleniuch-Jacquotte A, Akhmedkhanov A, Kato I, Koenig KL, Shore RE, Kim MY, et al. Postmenopausal endogenous oestrogens and risk of endometrial cancer: results of a prospective study. Br J Cancer. 2001;84:975–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clendenen TV, Hertzmark K, Koenig KL, Lundin E, Rinaldi S, Johnson T, et al. Premenopausal circulating androgens and risk of endometrial cancer: results of a prospective study. Hormones Cancer. 2016;7:178–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Michels KA, Brinton LA, Wentzensen N, Pan K, Chen C, Anderson GL, et al. Postmenopausal androgen metabolism and endometrial cancer risk in the women’s health initiative observational study. JNCI Cancer Spectr. 2019;3:pkz029.

  8. Fortunati N, Catalano MG. Sex hormone-binding globulin (SHBG) and estradiol cross-talk in breast cancer cells. Horm Metab Res. 2006;38:236–40.

    Article  CAS  PubMed  Google Scholar 

  9. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8:915–28.

    Article  CAS  PubMed  Google Scholar 

  10. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev. 2007;28:20–47.

    Article  CAS  PubMed  Google Scholar 

  11. Mynarcik DC, Williams PF, Schaffer L, Yu GQ, Whittaker J. Identification of common ligand binding determinants of the insulin and insulin-like growth factor 1 receptors. Insights into mechanisms of ligand binding. J Biol Chem. 1997;272:18650–5.

  12. Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92:1472–89.

    Article  CAS  PubMed  Google Scholar 

  13. Augustin LS, Dal Maso L, Franceschi S, Talamini R, Kendall CW, Jenkins DJ, et al. Association between components of the insulin-like growth factor system and endometrial cancer risk. Oncology. 2004;67:54–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lacey JV Jr, Potischman N, Madigan MP, Berman ML, Mortel R, Twiggs LB, et al. Insulin-like growth factors, insulin-like growth factor-binding proteins, and endometrial cancer in postmenopausal women: results from a U.S. case-control study. Cancer Epidemiol Biomark Prev. 2004;13:607–12.

    CAS  Google Scholar 

  15. Lukanova A, Zeleniuch-Jacquotte A, Lundin E, Micheli A, Arslan AA, Rinaldi S, et al. Prediagnostic levels of C-peptide, IGF-I, IGFBP -1, −2 and −3 and risk of endometrial cancer. Int J Cancer. 2004;108:262–8.

    Article  CAS  PubMed  Google Scholar 

  16. Oh JC, Wu W, Tortolero-Luna G, Broaddus R, Gershenson DM, Burke TW, et al. Increased plasma levels of insulin-like growth factor 2 and insulin-like growth factor binding protein 3 are associated with endometrial cancer risk. Cancer Epidemiol Biomark Prev. 2004;13:748–52.

    CAS  Google Scholar 

  17. Petridou E, Koukoulomatis P, Alexe DM, Voulgaris Z, Spanos E, Trichopoulos D. Endometrial cancer and the IGF system: a case-control study in Greece. Oncology. 2003;64:341–5.

    Article  PubMed  Google Scholar 

  18. Weiderpass E, Brismar K, Bellocco R, Vainio H, Kaaks R. Serum levels of insulin-like growth factor-I, IGF-binding protein 1 and 3, and insulin and endometrial cancer risk. Br J Cancer. 2003;89:1697–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hosgood HD, Gunter MJ, Murphy N, Rohan TE, Strickler HD. The relation of obesity-related hormonal and cytokine levels with multiple myeloma and non-Hodgkin lymphoma. Front Oncol. 2018;8:103.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ogo Y, Taniuchi S, Ojima F, Hayashi S, Murakami I, Saito Y, et al. IGF-1 gene expression is differentially regulated by estrogen receptors alpha and beta in mouse endometrial stromal cells and ovarian granulosa cells. J Reprod Dev. 2014;60:216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neale Lab. UK Biobank GWAS Results. 2019. http://www.nealelab.is/uk-biobank. Accessed 30 Sept 2019.

  22. Ruth KS, Day FR, Tyrrell J, Thompson DJ, Wood AR, Mahajan A, et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med. 2020;26:252–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Mara TA, Glubb DM, Amant F, Annibali D, Ashton K, Attia J, et al. Identification of nine new susceptibility loci for endometrial cancer. Nat Commun. 2018;9:3166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. UK-Biobank. Protocol for a large-scale prospective epidemiological resources. https://www.ukbiobank.ac.uk/ 2010.

  25. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am J Epidemiol. 2017;186:1026–34.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Elliott P, Peakman TC, Biobank UK. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int J Epidemiol. 2008;37:234–44.

    Article  PubMed  Google Scholar 

  27. UK-Biobank. UK Biobank Biomarker Project—companion document to accompany serum biomarker data. https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/serum_biochemistry.pdf 2019.

  28. Sodergard R, Backstrom T, Shanbhag V, Carstensen H. Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J Steroid Biochem. 1982;16:801–10.

    Article  CAS  PubMed  Google Scholar 

  29. Watts EL, Appleby PN, Perez-Cornago A, Bueno-de-Mesquita HB, Chan JM, Chen C, et al. Low free testosterone and prostate cancer risk: a collaborative analysis of 20 prospective studies. Eur Urol. 2018;74:585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Townsend P. Deprivation. J Soc Policy. 1987;16:125–46.

    Article  Google Scholar 

  31. MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335:765–74.

    Article  CAS  PubMed  Google Scholar 

  32. Clarke R, Emberson JR, Breeze E, Casas JP, Parish S, Hingorani AD, et al. Biomarkers of inflammation predict both vascular and non-vascular mortality in older men. Eur Heart J. 2008;29:800–9.

    Article  CAS  PubMed  Google Scholar 

  33. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol.). 1995;57:289–300.

    Google Scholar 

  34. Schoenfeld D. Partial residuals for the proportional hazards regression model. Biometrika. 1982;69:239–41.

    Article  Google Scholar 

  35. Murphy N, Knuppel A, Papadimitriou N, Martin RM, Tsilidis KK, Smith-Byrne K, et al. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, and breast cancer risk: observational and Mendelian randomization analyses with approximately 430 000 women. Ann Oncol. 2020;31:641–9.

    Article  CAS  PubMed  Google Scholar 

  36. Day FR, Loh PR, Scott RA, Ong KK, Perry JR. A robust example of collider bias in a Genetic Association Study. Am J Hum Genet. 2016;98:392–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017;36:1783–802.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30:543–52.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.

    Article  Google Scholar 

  41. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haas ME, Aragam KG, Emdin CA, Bick AG, International Consortium for Blood Pressure, Hemani, G, et al. Genetic association of albuminuria with cardiometabolic disease and blood pressure. Am J Hum Genet. 2018;103:461–73.

  45. Hemani G, Tilling K, Smith, GD. Correction: Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13:e1007149.

  46. Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46:1734–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ito K, Miki Y, Suzuki T, McNamara KM, Sasano H. In situ androgen and estrogen biosynthesis in endometrial cancer: focus on androgen actions and intratumoral production. Endocr Relat Cancer. 2016;23:R323–335.

    Article  CAS  PubMed  Google Scholar 

  48. Larsson SC, Carter P, Vithayathil M, Kar S, Mason AM, Burgess S. Insulin-like growth factor-1 and site-specific cancers: a Mendelian randomization study. Cancer Med. 2020;9:6836–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murphy LJ, Ghahary A. Uterine insulin-like growth factor-1: regulation of expression and its role in estrogen-induced uterine proliferation. Endocr Rev. 1990;11:443–53.

    Article  CAS  PubMed  Google Scholar 

  50. Clarke R, Shipley M, Lewington S, Youngman L, Collins R, Marmot M, et al. Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies. Am J Epidemiol. 1999;150:341–53.

    Article  CAS  PubMed  Google Scholar 

  51. Rauh M. LC-MS/MS for protein and peptide quantification in clinical chemistry. J Chromatogr B Anal Technol Biomed Life Sci. 2012;883-4:59–67.

    Article  CAS  Google Scholar 

  52. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol. 2016;40:597–608.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been conducted using the UK Biobank Resource under Application Numbers 8294, and we express our gratitude to the participants and those involved in building the resource. UK Biobank is an open access resource. Bona fide researchers can apply to use the UK Biobank dataset by registering and applying at http://ukbiobank.ac.uk/register-apply/.

Funding

This work was supported by the French National Cancer Institute (INCa SHSESP17, grant no. 2017–127) and by Cancer Research UK (C18281/A29019).

Author information

Authors and Affiliations

Authors

Contributions

AM, ND, MJG and NM: Designed the study and developed the methodology, analysed the data, interpreted the results, drafted the paper and approved the final version. NA and TO’M: Interpreted the results, edited the manuscript and approved the final version.

Corresponding author

Correspondence to Neil Murphy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

UK Biobank has approval from the North-West Multi-Centre Research Ethics Committee, the National Information Governance Board for Health & Social Care in England and Wales and the Community Health Index Advisory Group in Scotland. Written informed consent was provided by all participants.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullee, A., Dimou, N., Allen, N. et al. Testosterone, sex hormone-binding globulin, insulin-like growth factor-1 and endometrial cancer risk: observational and Mendelian randomization analyses. Br J Cancer 125, 1308–1317 (2021). https://doi.org/10.1038/s41416-021-01518-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01518-3

This article is cited by

Search

Quick links