Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correction of murine sickle cell disease by allogeneic haematopoietic cell transplantation with anti-3rd party veto cells

Abstract

Despite advances in gene therapy allogeneic hematopoietic stem cell transplants (HSCT) remains the most effective way to cure sickle cell disease (SCD). However, there are substantial challenges including lack of suitable donors, therapy-related toxicity (TRM) and risk of graft-versus-host disease (GvHD). Perhaps the most critical question is when to do a transplant for SCD. Safer transplant protocols for HLA-disparate HSCT is needed before transplants are widely accepted for SCD. Although risk of GvHD and TRM are less with T-cell-deplete HSCT and reduced-intensity conditioning (RIC), transplant rejection is a challenge. We have reported graft rejection of T cell-depleted non-myeloablative HSCT can be overcome in wild type fully mis-matched recipient mice, using donor-derived anti-3rd party central memory CD8-positive veto cells combined with short-term low-dose rapamycin. Here, we report safety and efficacy of this approach in a murine model for SCD. Durable donor-derived chimerism was achieved using this strategy with reversal of pathological parameters of SCD, including complete conversion to normal donor-derived red cells, and correction of splenomegaly and the levels of circulating reticulocytes, hematocrit, and hemoglobin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chimerism induction in SCD (H-2Kb) recipient mice following transplantation of megadose T cell-depleted allo-HSCT (Nude-Balb/c; H-2Kd) combined with donor-derived veto CD8+ T cells and short-term rapamycin.
Fig. 2: Long-term follow-up of donor chimerism and SS hemoglobin posttransplant.
Fig. 3: Chimerism in SCD mice following transplantation of high-dose T-cell-depleted H2-mis-matched bone marrow with donor-derived veto CD8 T-cells and rapamycin.
Fig. 4: Hematological co-variates in chimeric mice compared to C57BL/c (host type), Balb/c mice (donor), and SCD mice.
Fig. 5: Histo-pathology.

Similar content being viewed by others

References

  1. Herrick JB. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. 1910. Yale J Biol Med. 2001;74:179–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: an increasing global health problem. Bull World Health Organ. 2001;79:704–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Glassberg J. Evidence-based management of sickle cell disease in the emergency department. Emerg Med Pract. 2011;13:1–20. quiz 20.

    PubMed  Google Scholar 

  4. Centre for Disease Control and Prevention. Data and statistics of sickle cell disease (SCD). https://www.cdc.gov/ncbddd/sicklecell/data.html. Accessed 21 Oct 2019.

  5. Esham KS, Rodday AM, Smith HP, Noubary F, Weidner RA, Buchsbaum RJ, et al. Assessment of health-related quality of life among adults hospitalized with sickle cell disease vaso-occlusive crisis. Blood Adv. 2020;4:19–27.

    Article  PubMed  Google Scholar 

  6. El Hoss S, Cochet S, Marin M, Lapoumeroulie C, Dussiot M, Bouazza N, et al. Insights into determinants of spleen injury in sickle cell anemia. Blood Adv. 2019;3:2328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Badawy SM, Payne AB. Association between clinical outcomes and metformin use in adults with sickle cell disease and diabetes mellitus. Blood Adv. 2019;3:3297–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Reeves SL, Jary HK, Gondhi JP, Kleyn M, Dombkowski KJ. Health outcomes and services in children with sickle cell trait, sickle cell anemia, and normal hemoglobin. Blood Adv. 2019;3:1574–80.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bolaños-Meade J, Fuchs EJ, Luznik L, Lanzkron SM, Gamper CJ, Jones RJ, et al. HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood. 2012;120:4285–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dallas MH, Triplett B, Shook DR, Hartford C, Srinivasan A, Laver J, et al. Long-term outcome and evaluation of organ function in pediatric patients undergoing haploidentical and matched related hematopoietic cell transplantation for sickle cell disease. Biol Blood Marrow Transpl. 2013;19:820–30.

    Article  Google Scholar 

  11. Fitzhugh CD, Hsieh MM, Taylor T, Coles W, Roskom K, Wilson D, et al. Cyclophosphamide improves engraftment in patients with SCD and severe organ damage who undergo haploidentical PBSCT. Blood Adv. 2017;1:652–61.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shenoy S, Eapen M, Panepinto JA, Logan BR, Wu J, Abraham A, et al. A trial of unrelated donor marrow transplantation for children with severe sickle cell disease. Blood. 2016;128:2561–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transpl. 2008;14:641–50.

    Article  CAS  Google Scholar 

  14. La Nasa G, Giardini C, Argiolu F, Locatelli F, Arras M, De Stefano P, et al. Unrelated donor bone marrow transplantation for thalassemia: the effect of extended haplotypes. Blood. 2002;99:4350–6.

    Article  PubMed  Google Scholar 

  15. Li C, Wu X, Feng X, He Y, Liu H, Pei F, et al. A novel conditioning regimen improves outcomes in beta-thalassemia major patients using unrelated donor peripheral blood stem cell transplantation. Blood. 2012;120:3875–81.

    Article  CAS  PubMed  Google Scholar 

  16. Or-Geva N, Reisner Y. The evolution of T-cell depletion in haploidentical stem-cell transplantation. Br J Haematol. 2016;172:667–84.

    Article  PubMed  Google Scholar 

  17. Rachamim N, Gan J, Segall H, Krauthgamer R, Marcus H, Berrebi A, et al. Tolerance induction by “megadose” hematopoietic transplants: donor-type human CD34 stem cells induce potent specific reduction of host anti-donor cytotoxic T lymphocyte precursors in mixed lymphocyte culture. Transplantation. 1998;65:1386–93.

    Article  CAS  PubMed  Google Scholar 

  18. Miller RG. An immunological suppressor cell inactivating cytotoxic T-lymphocyte precursor cells recognizing it. Nature. 1980;287:544–6.

    Article  CAS  PubMed  Google Scholar 

  19. Reisner Y, Or-Geva N. Veto cells for safer nonmyeloablative haploidentical HSCT and CAR T cell therapy. Semin Hematol. 2019;56:173–82.

    Article  PubMed  Google Scholar 

  20. Ophir E, Eidelstein Y, Afik R, Bachar-Lustig E, Reisner Y. Induction of tolerance to bone marrow allografts by donor-derived host nonreactive ex vivo-induced central memory CD8 T cells. Blood. 2010;115:2095–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ophir E, Or-Geva N, Gurevich I, Tal O, Eidelstein Y, Shezen E, et al. Murine anti-third-party central-memory CD8(+) T cells promote hematopoietic chimerism under mild conditioning: lymph-node sequestration and deletion of anti-donor T cells. Blood. 2013;121:1220–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kean LS, Durham MM, Adams AB, Hsu LL, Perry JR, Dillehay D, et al. A cure for murine sickle cell disease through stable mixed chimerism and tolerance induction after nonmyeloablative conditioning and major histocompatibility complex–mismatched bone marrow transplantation. Blood. 2002;99:1840–9.

    Article  CAS  PubMed  Google Scholar 

  23. Pestina TI, Hargrove PW, Zhao H, Mead PE, Smeltzer MP, Weiss MJ, et al. Amelioration of murine sickle cell disease by nonablative conditioning and gamma-globin gene-corrected bone marrow cells. Mol Ther Methods Clin Dev. 2015;2:15045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hulbert ML, Shenoy S. Hematopoietic stem cell transplantation for sickle cell disease: progress and challenges. Pediatr Blood Cancer. 2018;65:e27263.

    Article  PubMed  Google Scholar 

  25. Javazon EH, Radhi M, Gangadharan B, Perry J, Archer DR. Hematopoietic stem cell function in a murine model of sickle cell disease. Anemia. 2012;2012:387385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shenoy S. Hematopoietic stem cell transplantation for sickle cell disease: current practice and emerging trends. Hematol Am Soc Hematol Educ Program. 2011;2011:273–9.

    Article  Google Scholar 

  27. Robinson TM, Fuchs EJ. Allogeneic stem cell transplantation for sickle cell disease. Curr Opin Hematol. 2016;23:524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brodsky RA, Luznik L, Bolaños-Meade J, Leffell MS, Jones RJ, Fuchs EJ. Reduced intensity HLA-haploidentical BMT with post transplantation cyclophosphamide in nonmalignant hematologic diseases. Bone Marrow Transpl. 2008;42:523–7.

    Article  CAS  Google Scholar 

  29. Park SH, Lee CM, Dever DP, Davis TH, Camarena J, Srifa W, et al. Highly efficient editing of the beta-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. 2019;47:7955–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Romero Z, Lomova A, Said S, Miggelbrink A, Kuo CY, Campo-Fernandez B, et al. Editing the sickle cell disease mutation in human hematopoietic stem cells: comparison of endonucleases and homologous donor templates. Mol Ther. 2019;27:1389–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med. 2000;6:114.

    Article  CAS  PubMed  Google Scholar 

  32. Boumpas DT, Furie R, Manzi S, Illei GG, Wallace DJ, Balow JE, et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 2003;48:719–27.

    Article  CAS  PubMed  Google Scholar 

  33. Vincenti F. What’s in the pipeline? New immunosuppressive drugs in transplantation. Am J Transpl. 2002;2:898–903.

    Article  CAS  Google Scholar 

  34. Shock A, Burkly L, Wakefield I, Peters C, Garber E, Ferrant J, et al. CDP7657, an anti-CD40L antibody lacking an Fc domain, inhibits CD40L-dependent immune responses without thrombotic complications: an in vivo study. Arthritis Res Ther. 2015;17:234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Reich-Zeliger S, Zhao Y, Krauthgamer R, Bachar-Lustig E, Reisner Y. Anti-third party CD8+ CTLs as potent veto cells: coexpression of CD8 and FasL is a prerequisite. Immunity. 2000;13:507–15.

    Article  CAS  PubMed  Google Scholar 

  36. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105:4743–8.

    Article  CAS  PubMed  Google Scholar 

  38. Qu Y, Zhang B, Zhao L, Liu G, Ma H, Rao E, et al. The effect of immunosuppressive drug rapamycin on regulatory CD4+CD25+Foxp3+T cells in mice. Transpl Immunol. 2007;17:153–61.

    Article  CAS  PubMed  Google Scholar 

  39. Hale DA, Gottschalk R, Fukuzaki T, Wood ML, Maki T, Monaco AP. Extended skin allo- and xenograft survival in mice treated with rapamycin, antilymphocyte serum, and donor-specific bone marrow transfusion. Transpl Proc. 1996;28:3269.

    CAS  Google Scholar 

  40. Hale DA, Gottschalk R, Fukuzaki T, Wood ML, Maki T, Monaco AP. Superiority of sirolimus (rapamycin) over cyclosporine in augmenting allograft and xenograft survival in mice treated with antilymphocyte serum and donor-specific bone marrow. Transplantation. 1997;63:359–64.

    Article  CAS  PubMed  Google Scholar 

  41. Hale DA, Gottschalk R, Umemura A, Maki T, Monaco AP. Establishment of stable multilineage hematopoietic chimerism and donor-specific tolerance without irradiation. Transplantation. 2000;69:1242–51.

    Article  CAS  PubMed  Google Scholar 

  42. Pilat N, Klaus C, Gattringer M, Jaeckel E, Wrba F, Golshayan D, et al. Therapeutic efficacy of polyclonal tregs does not require rapamycin in a low-dose irradiation bone marrow transplantation model. Transplantation. 2011;92:280–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funded by Cell Source Inc.

Author information

Authors and Affiliations

Authors

Contributions

Y.R. conceived, designed, analyzed, interpret the data and wrote the typescript. A.K.S. helped design the study. A.K.S. performed and organized most of the experiments. A.K.S., Y.R., and, E.S. analyzed and interpreted the data. Y.R., R.P.G., and A.K.S. co-wrote the typescript. S.K.Y., W.-H.L., and E.B.L. assisted with experiments and typescript preparation. A.K.S., K.M., S.K.Y., R.K.Y., and W.-H.L. performed the hemoglobin electrophoreses and E.S. and A.K.S., the histopathology.

Corresponding author

Correspondence to Yair Reisner.

Ethics declarations

Conflict of interest

Y.R. is a consultant and shareholder of Cell Source Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Schetzen, E., Yadav, S.K. et al. Correction of murine sickle cell disease by allogeneic haematopoietic cell transplantation with anti-3rd party veto cells. Bone Marrow Transplant 56, 1818–1827 (2021). https://doi.org/10.1038/s41409-021-01237-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-021-01237-6

This article is cited by

Search

Quick links