Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combination of eriocalyxin B and homoharringtonine exerts synergistic anti-tumor effects against t(8;21) AML

Abstract

Understanding the molecular pathogenesis of acute myeloid leukemia (AML) with well-defined genomic abnormalities has facilitated the development of targeted therapeutics. Patients with t(8;21) AML frequently harbor a fusion gene RUNX1-RUNX1T1 and KIT mutations as “secondary hit”, making the disease one of the ideal models for exploring targeted treatment options in AML. In this study we investigated the combination therapy of agents targeting RUNX1-RUNX1T1 and KIT in the treatment of t(8;21) AML with KIT mutations. We showed that the combination of eriocalyxin B (EriB) and homoharringtonine (HHT) exerted synergistic therapeutic effects by dual inhibition of RUNX1-RUNX1T1 and KIT proteins in Kasumi-1 and SKNO-1 cells in vitro. In Kasumi-1 cells, the combination of EriB and HHT could perturb the RUNX1-RUNX1T1-responsible transcriptional network by destabilizing RUNX1-RUNX1T1 transcription factor complex (AETFC), forcing RUNX1-RUNX1T1 leaving from the chromatin, triggering cell cycle arrest and apoptosis. Meanwhile, EriB combined with HHT activated JNK signaling, resulting in the eventual degradation of RUNX1-RUNX1T1 by caspase-3. In addition, HHT and EriB inhibited NF-κB pathway through blocking p65 nuclear translocation in two different manners, to synergistically interfere with the transcription of KIT. In mice co-expressing RUNX1-RUNX1T1 and KITN822K, co-administration of EriB and HHT significantly prolonged survival of the mice by targeting CD34+CD38 leukemic cells. The synergistic effects of the two drugs were also observed in bone marrow mononuclear cells (BMMCs) of t(8;21) AML patients. Collectively, this study reveals the synergistic mechanism of the combination regimen of EriB and HHT in t(8;21) AML, providing new insight into optimizing targeted treatment of AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EriB and HHT showed synergistic effects on cell viability and apoptosis in t(8;21) AML.
Fig. 2: EriB and HHT synergistically disturbed RUNX1-RUNX1T1 transcriptional function through impairing AETFC.
Fig. 3: EriB and HHT activated caspase-3 through activating the JNK pathway.
Fig. 4: EriB and HHT regulated KIT gene expression through dual inhibition of NF-κB pathway.
Fig. 5: Therapeutic efficacy of EriB and HHT in vivo.
Fig. 6: Therapeutic efficacy of EriB and HHT in primary t(8;21) AML cells.
Fig. 7: Schematic diagram of the synergistic mechanism of the EriB and HHT combination in t(8;21) AML.

Similar content being viewed by others

References

  1. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thol F. What to use to treat AML: the role of emerging therapies. Hematology. 2021;2021:16–23.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Döhner H, Wei AH, Löwenberg B. Towards precision medicine for AML. Nat Rev Clin Oncol. 2021;18:577–90.

    Article  PubMed  Google Scholar 

  4. Pollyea DA, Bixby D, Perl A, Bhatt VR, Altman JK, Appelbaum FR, et al. NCCN guidelines insights: acute myeloid leukemia, version 2.2021. J Natl Compr Canc Netw. 2021;19:16–27.

    Article  PubMed  Google Scholar 

  5. Elagib KE, Goldfarb AN. Oncogenic pathways of AML1-ETO in acute myeloid leukemia: multifaceted manipulation of marrow maturation. Cancer Lett. 2007;251:179–86.

    Article  CAS  PubMed  Google Scholar 

  6. Hollein A, Nadarajah N, Meggendorfer M, Jeromin S, Kern W, Haferlach C, et al. Molecular characterization of AML with RUNX1-RUNX1T1 at diagnosis and relapse reveals net loss of co-mutations. Hemasphere. 2019;3:e178.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA. 1998;95:10860–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amann JM, Nip J, Strom DK, Lutterbach B, Harada H, Lenny N, et al. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol. 2001;21:6470–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trombly DJ, Whitfield TW, Padmanabhan S, Gordon JA, Lian JB, van Wijnen AJ, et al. Genome-wide co-occupancy of AML1-ETO and N-CoR defines the t(8;21) AML signature in leukemic cells. BMC Genomics. 2015;16:309.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang L, Gural A, Sun XJ, Zhao X, Perna F, Huang G, et al. The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science. 2011;333:765–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li Y, Wang H, Wang X, Jin W, Tan Y, Fang H, et al. Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia. Blood. 2016;127:233–42.

    Article  CAS  PubMed  Google Scholar 

  12. Ptasinska A, Pickin A, Assi SA, Chin PS, Ames L, Avellino R, et al. RUNX1-ETO depletion in t(8;21) AML leads to C/EBPalpha- and AP-1-mediated alterations in enhancer-promoter interaction. Cell Rep. 2019;28:3022–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun XJ, Wang Z, Wang L, Jiang Y, Kost N, Soong TD, et al. A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature. 2013;500:93–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duployez N, Marceau-Renaut A, Boissel N, Petit A, Bucci M, Geffroy S, et al. Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood. 2016;127:2451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wichmann C, Quagliano-Lo Coco I, Yildiz O, Chen-Wichmann L, Weber H, Syzonenko T, et al. Activating c-KIT mutations confer oncogenic cooperativity and rescue RUNX1/ETO-induced DNA damage and apoptosis in human primary CD34+ hematopoietic progenitors. Leukemia. 2015;29:279–89.

    Article  CAS  PubMed  Google Scholar 

  16. Yu X, Ruan X, Zhang J, Zhao Q. Celastrol induces cell apoptosis and inhibits the expression of the AML1-ETO/C-KIT oncoprotein in t(8;21) leukemia. Molecules. 2016;21:574.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hui H, Zhang X, Li H, Liu X, Shen L, Zhu Y, et al. Oroxylin A, a natural anticancer flavonoid compound, induces differentiation of t(8;21)-positive Kasumi-1 and primary acute myeloid leukemia cells. J Cancer Res Clin Oncol. 2016;142:1449–59.

    Article  CAS  PubMed  Google Scholar 

  18. Sawney S, Arora R, Aggarwal KK, Saluja D. Esculetin downregulates the expression of AML1-ETO and C-KIT in Kasumi-1 cell line by decreasing half-life of mRNA. J Oncol. 2015;2015:781473.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Oo ZM, Illendula A, Grembecka J, Schmidt C, Zhou Y, Esain V, et al. A tool compound targeting the core binding factor Runt domain to disrupt binding to CBFbeta in leukemic cells. Leuk Lymphoma. 2018;59:2188–200.

    Article  CAS  PubMed  Google Scholar 

  20. Paschka P, Schlenk RF, Weber D, Benner A, Bullinger L, Heuser M, et al. Adding dasatinib to intensive treatment in core-binding factor acute myeloid leukemia-results of the AMLSG 11-08 trial. Leukemia. 2018;32:1621–30.

    Article  CAS  PubMed  Google Scholar 

  21. Zhen T, Wu CF, Liu P, Wu HY, Zhou GB, Lu Y, et al. Targeting of AML1-ETO in t(8;21) leukemia by oridonin generates a tumor suppressor-like protein. Sci Transl Med. 2012;4:127ra38.

    Article  PubMed  Google Scholar 

  22. Wang L, Zhao WL, Yan JS, Liu P, Sun HP, Zhou GB, et al. Eriocalyxin B induces apoptosis of t(8;21) leukemia cells through NF-kappaB and MAPK signaling pathways and triggers degradation of AML1-ETO oncoprotein in a caspase-3-dependent manner. Cell Death Differ. 2007;14:306–17.

    Article  PubMed  Google Scholar 

  23. Chen XJ, Zhang WN, Chen B, Xi WD, Lu Y, Huang JY, et al. Homoharringtonine deregulates MYC transcriptional expression by directly binding NF-kappaB repressing factor. Proc Natl Acad Sci USA. 2019;116:2220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang ZY, Chen Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood. 2008;111:2505–15.

    Article  CAS  PubMed  Google Scholar 

  25. Wang YY, Zhao LJ, Wu CF, Liu P, Shi L, Liang Y, et al. C-KIT mutation cooperates with full-length AML1-ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA. 2011;108:2450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.

    Article  CAS  PubMed  Google Scholar 

  27. Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008;27:6245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D12.

    Article  CAS  PubMed  Google Scholar 

  29. Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ, et al. Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell. 2010;17:333–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goyama S, Mulloy JC. Molecular pathogenesis of core binding factor leukemia: current knowledge and future prospects. Int J Hematol. 2011;94:126–33.

    Article  CAS  PubMed  Google Scholar 

  31. Ptasinska A, Assi Salam A, Martinez-Soria N, Imperato Maria R, Piper J, Cauchy P, et al. Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal. Cell Rep. 2014;8:1974–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mangaonkar AA, Patnaik MM. Hereditary predisposition to hematopoietic neoplasms: when bloodline matters for blood cancers. Mayo Clin Proc. 2020;95:1482–98.

    Article  CAS  PubMed  Google Scholar 

  33. Kato H, Igarashi K. To be red or white: lineage commitment and maintenance of the hematopoietic system by the “inner myeloid”. Haematologica. 2019;104:1919–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lieu YK, Reddy EP. Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation. Proc Natl Acad Sci USA. 2009;106:21689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nafria M, Keane P, Ng ES, Stanley EG, Elefanty AG, Bonifer C. Expression of RUNX1-ETO rapidly alters the chromatin landscape and growth of early human myeloid precursor cells. Cell Rep. 2020;31:107691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G. NF-kappaB and JNK: an intricate affair. Cell Cycle. 2004;3:1524–9.

    Article  CAS  PubMed  Google Scholar 

  37. Rovida E, Gozzini A, Barbetti V, Giuntoli S, Santini V, Dello Sbarba P. The c-Jun-N-terminal-Kinase inhibitor SP600125 enhances the butyrate derivative D1-induced apoptosis via caspase 8 activation in Kasumi 1 t(8;21) acute myeloid leukaemia cells. Br J Haematol. 2006;135:653–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81670137), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20152501), and State Key Laboratory of Medical Genomics Support (201802), and Jiading District Health Commission Chinese Medicine Youth Research Support (2019-QN-ZYY-03).

Author information

Authors and Affiliations

Authors

Contributions

BC conceived and supervised the study. YCL and XJC conducted the main experiments. BD, JYW, and MHL participated in the experiments. YTD performed RNA-seq and ChIP-seq analysis. PL, HL, and KKW gave the technical support. BC, XJC, YCL, and LJ wrote the paper. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Lu Jiang or Bing Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Yc., Chen, Xj., Dai, Yt. et al. Combination of eriocalyxin B and homoharringtonine exerts synergistic anti-tumor effects against t(8;21) AML. Acta Pharmacol Sin 45, 633–645 (2024). https://doi.org/10.1038/s41401-023-01196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01196-2

Keywords

Search

Quick links