Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Paraptosis: a non-classical paradigm of cell death for cancer therapy

Abstract

Due to the sustained proliferative potential of cancer cells, inducing cell death is a potential strategy for cancer therapy. Paraptosis is a mode of cell death characterized by endoplasmic reticulum (ER) and/or mitochondrial swelling and cytoplasmic vacuolization, which is less investigated. Considerable evidence shows that paraptosis can be triggered by various chemical compounds, particularly in cancer cells, thus highlighting the potential application of this non-classical mode of cell death in cancer therapy. Despite these findings, there remain significant gaps in our understanding of the role of paraptosis in cancer. In this review, we summarize the current knowledge on chemical compound-induced paraptosis. The ER and mitochondria are the two major responding organelles in chemical compound-induced paraptosis, which can be triggered by the reduction of protein degradation, disruption of sulfhydryl homeostasis, overload of mitochondrial Ca2+, and increased generation of reactive oxygen species. We also discuss the stumbling blocks to the development of this field and the direction for further research. The rational use of paraptosis might help us develop a new paradigm for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of the process involved in compound-induced paraptosis.
Fig. 2: Schematic diagram of future perspectives in studying paraptosis.

Similar content being viewed by others

References

  1. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  PubMed  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  3. Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6:128.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res. 2007;13:7271–9.

    Article  PubMed  CAS  Google Scholar 

  6. Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22:381–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lee D, Kim IY, Saha S, Choi KS. Paraptosis in the anti-cancer arsenal of natural products. Pharmacol Ther. 2016;162:120–33.

    Article  PubMed  CAS  Google Scholar 

  8. Lee SE, Sivtseva S, Lim C, Okhlopkova Z, Cho S. Artemisia kruhsiana leaf extract induces autophagic cell death in human prostate cancer cells. Chin J Nat Med. 2021;19:134–42.

    PubMed  CAS  Google Scholar 

  9. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17:395–417.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA. 2000;97:14376–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fontana F, Raimondi M, Marzagalli M, Di Domizio A, Limonta P. The emerging role of paraptosis in tumor cell biology: Perspectives for cancer prevention and therapy with natural compounds. Biochim Biophys Acta Rev Cancer. 2020;1873:188338.

    Article  PubMed  CAS  Google Scholar 

  12. Kim E, Lee DM, Seo MJ, Lee HJ, Choi KS. Intracellular Ca2+ imbalance critically contributes to paraptosis. Front Cell Dev Biol. 2020;8:607844.

    Article  PubMed  Google Scholar 

  13. Wang Y, Li X, Wang L, Ding P, Zhang Y, Han W, et al. An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression. J Cell Sci. 2004;117:1525–32.

    Article  PubMed  CAS  Google Scholar 

  14. Fombonne J, Padrón L, Enjalbert A, Krantic S, Torriglia A. A novel paraptosis pathway involving LEI/L-DNaseII for EGF-induced cell death in somato-lactotrope pituitary cells. Apoptosis. 2006;11:367–75.

    Article  PubMed  CAS  Google Scholar 

  15. Jadus MR, Chen Y, Boldaji MT, Delgado C, Sanchez R, Douglass T, et al. Human U251MG glioma cells expressing the membrane form of macrophage colony-stimulating factor (mM-CSF) are killed by human monocytes in vitro and are rejected within immunodeficient mice via paraptosis that is associated with increased expression of three different heat shock proteins. Cancer Gene Ther. 2003;10:411–20.

    Article  PubMed  CAS  Google Scholar 

  16. Sperandio S, Poksay K, de Belle I, Lafuente MJ, Liu B, Nasir J, et al. Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ. 2004;11:1066–75.

    Article  PubMed  CAS  Google Scholar 

  17. Su MX, Xu YL, Jiang XM, Huang MY, Zhang LL, Yuan LW, et al. c-MYC-mediated TRIB3/P62+ aggresomes accumulation triggers paraptosis upon the combination of everolimus and ginsenoside Rh2. Acta Pharm Sin B. 2022;12:1240–53.

    Article  PubMed  CAS  Google Scholar 

  18. Li GN, Zhao XJ, Wang Z, Luo MS, Shi SN, Yan DM, et al. Elaiophylin triggers paraptosis and preferentially kills ovarian cancer drug-resistant cells by inducing MAPK hyperactivation. Signal Transduct Target Ther. 2022;7:317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhao L, Zhong B, Zhu Y, Zheng H, Wang X, Hou Y, et al. Nitrovin (difurazone), an antibacterial growth promoter, induces ROS-mediated paraptosis-like cell death by targeting thioredoxin reductase 1 (TrxR1). Biochem Pharmacol. 2023;210:115487.

    Article  PubMed  CAS  Google Scholar 

  20. Seo MJ, Kim IY, Lee DM, Park YJ, Cho M-Y, Jin HJ, et al. Dual inhibition of thioredoxin reductase and proteasome is required for auranofin-induced paraptosis in breast cancer cells. Cell Death Dis. 2023;14:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dai CH, Zhu LR, Wang Y, Tang XP, Du YJ, Chen YC, et al. Celastrol acts synergistically with afatinib to suppress non-small cell lung cancer cell proliferation by inducing paraptosis. J Cell Physiol. 2021;236:4538–54.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang SR, Zhang XC, Liang JF, Fang HM, Huang HX, Zhao YY, et al. Chalcomoracin inhibits cell proliferation and increases sensitivity to radiotherapy in human non-small cell lung cancer cells via inducing endoplasmic reticulum stress-mediated paraptosis. Acta Pharmacol Sin. 2020;41:825–34.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell. 2017;169:792–806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lee AR, Seo MJ, Kim J, Lee DM, Kim IY, Yoon MJ, et al. Lercanidipine synergistically enhances bortezomib cytotoxicity in cancer cells via enhanced endoplasmic reticulum stress and mitochondrial Ca2+ overload. Int J Mol Sci. 2019;20:6112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zheng H, Dong Y, Li L, Sun B, Liu L, Yuan H, et al. Novel benzo[a]quinolizidine analogs induce cancer cell death through paraptosis and apoptosis. J Med Chem. 2016;59:5063–76.

    Article  PubMed  CAS  Google Scholar 

  26. Pang HF, Li XX, Zhao YH, Kang JK, Li JY, Tian W, et al. Confirming whether novel rhein derivative 4a induces paraptosis-like cell death by endoplasmic reticulum stress in ovarian cancer cells. Eur J Pharmacol. 2020;886:173526.

    Article  PubMed  CAS  Google Scholar 

  27. Ram BM, Ramakrishna G. Endoplasmic reticulum vacuolation and unfolded protein response leading to paraptosis like cell death in cyclosporine A treated cancer cervix cells is mediated by cyclophilin B inhibition. Biochim Biophys Acta. 2014;1843:2497–512.

    Article  PubMed  CAS  Google Scholar 

  28. Ma M, Luan X, Zheng H, Wang X, Wang S, Shen T, et al. A mulberry diels-alder-type adduct, Kuwanon M, triggers apoptosis and paraptosis of lung cancer cells through inducing endoplasmic reticulum stress. Int J Mol Sci. 2023;24:1015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhang C, Jiang Y, Zhang J, Huang J, Wang J. 8-p-Hdroxybenzoyl tovarol induces paraptosis like cell death and protective autophagy in human cervical cancer HeLa cells. Int J Mol Sci. 2015;16:14979–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, et al. The hsp70 inhibitor VER155008 induces paraptosis requiring de novo protein synthesis in anaplastic thyroid carcinoma cells. Biochem Biophys Res Commun. 2014;454:36–41.

    Article  PubMed  CAS  Google Scholar 

  31. Wasik AM, Almestrand S, Wang X, Hultenby K, Dackland Ã…-L, Andersson P, et al. WIN55,212-2 induces cytoplasmic vacuolation in apoptosis-resistant MCL cells. Cell Death Dis. 2011;2:e225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Fontana F, Moretti RM, Raimondi M, Marzagalli M, Beretta G, Procacci P, et al. δ-Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells. Cell Prolif. 2019;52:e12576.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu X, Gu Y, Bian Y, Cai D, Li Y, Zhao Y, et al. Honokiol induces paraptosis-like cell death of acute promyelocytic leukemia via mTOR & MAPK signaling pathways activation. Apoptosis. 2021;26:195–208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lee DM, Seo MJ, Lee HJ, Jin HJ, Choi KS. ISRIB plus bortezomib triggers paraptosis in breast cancer cells via enhanced translation and subsequent proteotoxic stress. Biochem Biophys Res Commun. 2022;596:56–62.

    Article  PubMed  CAS  Google Scholar 

  35. Ma L, Xuan X, Fan M, Zhang Y, Yuan G, Huang G, et al. A novel 8-hydroxyquinoline derivative induces breast cancer cell death through paraptosis and apoptosis. Apoptosis. 2022;27:577–89.

    Article  PubMed  CAS  Google Scholar 

  36. Nedungadi D, Binoy A, Pandurangan N, Pal S, Nair BG, Mishra N. 6-Shogaol induces caspase-independent paraptosis in cancer cells via proteasomal inhibition. Exp Cell Res. 2018;364:243–51.

    Article  PubMed  CAS  Google Scholar 

  37. Nedungadi D, Binoy A, Pandurangan N, Nair BG, Mishra N. Proteasomal dysfunction and ER stress triggers 2’-hydroxy-retrochalcone-induced paraptosis in cancer cells. Cell Biol Int. 2021;45:164–76.

    Article  PubMed  CAS  Google Scholar 

  38. Yoon MJ, Kim EH, Lim JH, Kwon TK, Choi KS. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells. Free Radic Biol Med. 2010;48:713–26.

    Article  PubMed  CAS  Google Scholar 

  39. Yoon MJ, Kang YJ, Lee JA, Kim IY, Kim MA, Lee YS, et al. Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin. Cell Death Dis. 2014;5:e1112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Rogov V, Dötsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. 2014;53:167–78.

    Article  PubMed  CAS  Google Scholar 

  41. Chen L, Liu S, Xu F, Kong Y, Wan L, Zhang Y, et al. Inhibition of proteasome activity induces aggregation of IFIT2 in the centrosome and enhances IFIT2-induced cell apoptosis. Int J Biol Sci. 2017;13:383–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Radzinski M, Oppenheim T, Metanis N, Reichmann D. The Cys sense: thiol redox switches mediate life cycles of cellular proteins. Biomolecules. 2021;11:469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hager S, Korbula K, Bielec B, Grusch M, Pirker C, Schosserer M, et al. The thiosemicarbazone Me2NNMe2 induces paraptosis by disrupting the ER thiol redox homeostasis based on protein disulfide isomerase inhibition. Cell Death Dis. 2018;9:1052.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Seo MJ, Lee DM, Kim IY, Lee D, Choi MK, Lee JY, et al. Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis. Cell Death Dis. 2019;10:187.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Binoy A, Nedungadi D, Katiyar N, Bose C, Shankarappa SA, Nair BG, et al. Plumbagin induces paraptosis in cancer cells by disrupting the sulfhydryl homeostasis and proteasomal function. Chem Biol Interact. 2019;310:108733.

    Article  PubMed  CAS  Google Scholar 

  46. Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium. 2002;32:235–49.

    Article  PubMed  CAS  Google Scholar 

  47. Malli R, Frieden M, Trenker M, Graier WF. The role of mitochondria for Ca2+ refilling of the endoplasmic reticulum. J Biol Chem. 2005;280:12114–22.

    Article  PubMed  CAS  Google Scholar 

  48. Yoon MJ, Kim EH, Kwon TK, Park SA, Choi KS. Simultaneous mitochondrial Ca2+ overload and proteasomal inhibition are responsible for the induction of paraptosis in malignant breast cancer cells. Cancer Lett. 2012;324:197–209.

    Article  PubMed  CAS  Google Scholar 

  49. Dilshara MG, Neelaka Molagoda IM, Prasad Tharanga Jayasooriya RG, Choi YH, Park C, Kim GY. Indirubin-3’-monoxime induces paraptosis in MDA-MB-231 breast cancer cells by transmitting Ca2+ from endoplasmic reticulum to mitochondria. Arch Biochem Biophys. 2021;698:108723.

    Article  PubMed  CAS  Google Scholar 

  50. Yumnam S, Hong GE, Raha S, Saralamma VVG, Lee HJ, Lee WS, et al. Mitochondrial dysfunction and Ca2+ overload contributes to hesperidin induced paraptosis in hepatoblastoma cells, HepG2. J Cell Physiol. 2016;231:1261–8.

    Article  PubMed  CAS  Google Scholar 

  51. Pyrczak Felczykowska A, Reekie TA, Jąkalski M, Hać A, Malinowska M, Pawlik A, et al. The isoxazole derivative of usnic acid induces an ER stress response in breast cancer cells that leads to paraptosis-like cell death. Int J Mol Sci. 2022;23:1802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bury M, Girault A, Mégalizzi V, Spiegl Kreinecker S, Mathieu V, Berger W, et al. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity. Cell Death Dis. 2013;4:e561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Xue J, Li R, Zhao X, Ma C, Lv X, Liu L, et al. Morusin induces paraptosis-like cell death through mitochondrial calcium overload and dysfunction in epithelial ovarian cancer. Chem Biol Interact. 2018;283:59–74.

    Article  PubMed  CAS  Google Scholar 

  54. Li XQ, Ren J, Wang Y, Su JY, Zhu YM, Chen CG, et al. Synergistic killing effect of paclitaxel and honokiol in non-small cell lung cancer cells through paraptosis induction. Cell Oncol. 2021;44:135–50.

    Article  CAS  Google Scholar 

  55. Lee DM, Kim IY, Seo MJ, Kwon MR, Choi KS. Nutlin-3 enhances the bortezomib sensitivity of p53-defective cancer cells by inducing paraptosis. Exp Mol Med. 2017;49:e365.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Solovieva M, Shatalin Y, Fadeev R, Krestinina O, Baburina Y, Kruglov A, et al. Vitamin B12b enhances the cytotoxicity of diethyldithiocarbamate in a synergistic manner, inducing the paraptosis-like death of human larynx carcinoma cells. Biomolecules. 2020;10:69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kim IY, Shim MJ, Lee DM, Lee AR, Kim MA, Yoon MJ, et al. Loperamide overcomes the resistance of colon cancer cells to bortezomib by inducing CHOP-mediated paraptosis-like cell death. Biochem Pharmacol. 2019;162:41–54.

    Article  PubMed  CAS  Google Scholar 

  58. Bettigole SE, Glimcher LH. Endoplasmic reticulum stress in immunity. Annu Rev Immunol. 2015;33:107–38.

    Article  PubMed  CAS  Google Scholar 

  59. Weerasinghe P, Buja LM. Oncosis: an important non-apoptotic mode of cell death. Exp Mol Pathol. 2012;93:302–8.

    Article  PubMed  CAS  Google Scholar 

  60. Chen Q, Song S, Wang Z, Shen Y, Xie L, Li J, et al. Isorhamnetin induces the paraptotic cell death through ROS and the ERK/MAPK pathway in OSCC cells. Oral Dis. 2021;27:240–50.

    Article  PubMed  Google Scholar 

  61. Nguyen PL, Lee CH, Lee H, Cho J. Induction of paraptotic cell death in breast cancer cells by a novel pyrazolo[3,4-h]quinoline derivative through ROS production and endoplasmic reticulum stress. Antioxidants. 2022;11:117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chen X, Chen X, Zhang X, Wang L, Cao P, Rajamanickam V, et al. Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells. Redox Biol. 2019;21:101061.

    Article  PubMed  CAS  Google Scholar 

  63. Raimondi M, Fontana F, Marzagalli M, Audano M, Beretta G, Procacci P, et al. Ca2+ overload- and ROS-associated mitochondrial dysfunction contributes to δ-tocotrienol-mediated paraptosis in melanoma cells. Apoptosis. 2021;26:277–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sang J, Li W, Diao HJ, Fan RZ, Huang JL, Gan L, et al. Jolkinolide B targets thioredoxin and glutathione systems to induce ROS-mediated paraptosis and apoptosis in bladder cancer cells. Cancer Lett. 2021;509:13–25.

    Article  PubMed  CAS  Google Scholar 

  65. Zhang CY, Gao Y, Zhu RX, Qiao YN, Zhou JC, Zhang JZ, et al. Prenylated bibenzyls from the Chinese Liverwort Radula constricta and their mitochondria-derived paraptotic cytotoxic activities. J Nat Prod. 2019;82:1741–51.

    Article  PubMed  CAS  Google Scholar 

  66. Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, et al. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett. 2011;301:185–92.

    Article  PubMed  CAS  Google Scholar 

  67. Chen TS, Wang XP, Sun L, Wang LX, Xing D, Mok M. Taxol induces caspase-independent cytoplasmic vacuolization and cell death through endoplasmic reticulum (ER) swelling in ASTC-a-1 cells. Cancer Lett. 2008;270:164–72.

    Article  PubMed  CAS  Google Scholar 

  68. Yamaguchi K, Yokoi K, Umezawa M, Tsuchiya K, Yamada Y, Aoki S. Design, synthesis, and anticancer activity of triptycene-peptide hybrids that induce paraptotic cell death in cancer cells. Bioconjug Chem. 2022;33:691–717.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang Y, Liu F, Ng TB. Interrelationship among paraptosis, apoptosis and autophagy in lung cancer A549 cells induced by BEAP, an antitumor protein isolated from the edible porcini mushroom Boletus edulis. Int J Biol Macromol. 2021;188:313–22.

    Article  PubMed  CAS  Google Scholar 

  70. Nedungadi D, Binoy A, Vinod V, Vanuopadath M, Nair SS, Nair BG, et al. Ginger extract activates caspase independent paraptosis in cancer cells via ER stress, mitochondrial dysfunction, AIF translocation and DNA damage. Nutr Cancer. 2021;73:147–59.

    Article  PubMed  CAS  Google Scholar 

  71. Gandin V, Pellei M, Tisato F, Porchia M, Santini C, Marzano C. A novel copper complex induces paraptosis in colon cancer cells via the activation of ER stress signalling. J Cell Mol Med. 2012;16:142–51.

    Article  PubMed  CAS  Google Scholar 

  72. Liu L, An X, Schaefer M, Yan B, de la Torre C, Hillmer S, et al. Nanosilver inhibits the progression of pancreatic cancer by inducing a paraptosis-like mixed type of cell death. Biomed Pharmacother. 2022;153:113511.

    Article  PubMed  CAS  Google Scholar 

  73. Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X. Copper metabolism in cell death and autophagy. Autophagy. 2023;19:2175–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 2022;15:174.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yu F, Tan W, Chen Z, Shen X, Mo X, Mo X, et al. Nitidine chloride induces caspase 3/GSDME-dependent pyroptosis by inhibting PI3K/Akt pathway in lung cancer. Chin Med. 2022;17:115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Cerella C, Teiten M-H, Radogna F, Dicato M, Diederich M. From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv. 2014;32:1111–22.

    Article  PubMed  CAS  Google Scholar 

  77. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.

    Article  PubMed  CAS  Google Scholar 

  78. Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221:107753.

    Article  PubMed  CAS  Google Scholar 

  79. Zheng RR, Zhao LP, Huang CY, Cheng H, Yang N, Chen ZX, et al. Paraptosis inducer to effectively trigger immunogenic cell death for metastatic tumor immunotherapy with IDO inhibition. ACS Nano. 2023;17:9972–86.

    Article  PubMed  CAS  Google Scholar 

  80. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.

    Article  PubMed  CAS  Google Scholar 

  81. Pehar M, O’Riordan KJ, Burns Cusato M, Andrzejewski ME, del Alcazar CG, Burger C, et al. Altered longevity-assurance activity of p53:p44 in the mouse causes memory loss, neurodegeneration and premature death. Aging Cell. 2010;9:174–90.

    Article  PubMed  CAS  Google Scholar 

  82. Lai YH, Lee PY, Lu CY, Liu YR, Wang SC, Liu CC, et al. Thrombospondin 1-induced exosomal proteins attenuate hypoxia-induced paraptosis in corneal epithelial cells and promote wound healing. FASEB J. 2021;35:e21200.

    Article  PubMed  CAS  Google Scholar 

  83. Petrillo S, Chiabrando D, Genova T, Fiorito V, Ingoglia G, Vinchi F, et al. Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis. Cell Death Differ. 2018;25:573–88.

    Article  PubMed  CAS  Google Scholar 

  84. Dierge E, Debock E, Guilbaud C, Corbet C, Mignolet E, Mignard L, et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 2021;33:1701–15.

    Article  PubMed  CAS  Google Scholar 

  85. Kim R, Hashimoto A, Markosyan N, Tyurin VA, Tyurina YY, Kar G, et al. Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature. 2022;612:338–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Li B, Huang J, Liu J, He F, Wen F, Yang C, et al. Discovery of a Nur77-mediated cytoplasmic vacuolation and paraptosis inducer (4-PQBH) for the treatment of hepatocellular carcinoma. Bioorg Chem. 2022;121:105651.

    Article  PubMed  CAS  Google Scholar 

  87. Chen X, Wang Y, Ma N, Tian J, Shao Y, Zhu B, et al. Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal Transduct Target Ther. 2020;5:72.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. 2022;12:e694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Vandereyken K, Sifrim A, Thienpont B, Voet T. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 2023;24:494–515.

    Article  PubMed  CAS  Google Scholar 

  90. Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J. CRISPR-Cas9 for cancer therapy: opportunities and challenges. Cancer Lett. 2019;447:48–55.

    Article  PubMed  CAS  Google Scholar 

  91. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18:1106–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Cao WX, Li T, Tang ZH, Zhang LL, Wang ZY, Guo X, et al. MLKL mediates apoptosis via a mutual regulation with PERK/eIF2α pathway in response to reactive oxygen species generation. Apoptosis. 2018;23:521–31.

    Article  PubMed  CAS  Google Scholar 

  93. Xu XH, Liu QY, Li T, Liu JL, Chen X, Huang L, et al. Garcinone E induces apoptosis and inhibits migration and invasion in ovarian cancer cells. Sci Rep. 2017;7:10718.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Xu XH, Chen YC, Xu YL, Feng ZL, Liu QY, Guo X, et al. Garcinone E blocks autophagy through lysosomal functional destruction in ovarian cancer cells. World J Tradit Chin Med. 2021;7:209–16.

    Google Scholar 

  95. Zheng H, Liu Q, Wang S, Liu X, Ma M, Shen T, et al. Epimedokoreanin B inhibits the growth of lung cancer cells through endoplasmic reticulum stress-mediated paraptosis accompanied by autophagosome accumulation. Chem Biol Interact. 2022;366:110125.

    Article  PubMed  CAS  Google Scholar 

  96. Wang WB, Feng LX, Yue QX, Wu WY, Guan SH, Jiang BH, et al. Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J Cell Physiol. 2012;227:2196–206.

    Article  PubMed  CAS  Google Scholar 

  97. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11:88.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Guo C, Liu P, Deng G, Han Y, Chen Y, Cai C, et al. Honokiol induces ferroptosis in colon cancer cells by regulating GPX4 activity. Am J Cancer Res. 2021;11:3039–54.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 81973516), the Science and Technology Development Fund, Macau SAR (File no. 0053-2021-AGJ), the Joint Foundation of Guangdong and Macau for Science and Technology Innovation (2022A0505020024), the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund (Guangdong-Hong Kong-Macau Joint Lab, File No.: 2020B1212030006), the Internal Research Grant of the State Key Laboratory of Quality Research in Chinese Medicine, University of Macau (File No.: SKL-QRCM-IRG2023-011), and the MoE Frontiers Science Center for Precision Oncology in University of Macau.

Author information

Authors and Affiliations

Authors

Contributions

CCX and YFL wrote and edited the manuscript. MYH, XLZ, PW, MQH, and JJL revised the manuscript. JJL provided direction and guidance throughout the preparation of this manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ming-qing Huang or Jin-jian Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Cc., Lin, Yf., Huang, My. et al. Paraptosis: a non-classical paradigm of cell death for cancer therapy. Acta Pharmacol Sin 45, 223–237 (2024). https://doi.org/10.1038/s41401-023-01159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01159-7

Keywords

This article is cited by

Search

Quick links