Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer's epigenetic drugs: where are they in the cancer medicines?

Abstract

Epigenetic modulation can affect the characteristics of cancers. Because it is likely to manipulate epigenetic genes, they can be considered as potential targets for cancer treatment. In this comprehensive study, epigenetic drugs are categorized according to anticancer mechanisms and phase of therapy. The relevant articles or databases were searched for epigenetic approaches to cancer therapy. Epigenetic drugs are divided according to their mechanisms and clinical phases that have been approved by the FDA or are undergoing evaluation phases. DNA methylation agents, chromatin remodelers specially HDACs, and noncoding RNAs especially microRNAs are the main epi-drugs for cancer. Despite many challenges, combination therapy using epi-drugs and routine therapies such as chemotherapy in various approaches have exhibited beneficial effects compared with each treatment alone. Cancer stem cell targeting and epigenetic editing have been confirmed as definitive pathways for cancer treatment. This paper reviewed the available epigenetic approaches to cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The mechanism of anticancer drugs; DNA methylation, chromatin remodeling, and noncoding RNAs are the three main epigenetic mechanisms that contribute to the characteristics of cancer stem cells or the development of cancer.

Similar content being viewed by others

References

  1. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

    Article  CAS  PubMed  Google Scholar 

  2. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36.

    Article  CAS  PubMed  Google Scholar 

  3. Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153:38–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lowery AJ, Miller N, McNeill RE, Kerin MJ. MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin Cancer Res. 2008;14:360–5.

    Article  CAS  PubMed  Google Scholar 

  5. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22:9–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Azad N, Zahnow CA, Rudin CM, Baylin SB. The future of epigenetic therapy in solid tumours—lessons from the past. Nat Rev Clin Oncol. 2013;10:256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dey P. Chromatin remodeling, cancer and chemotherapy. Curr Med Chem. 2006;13:2909–19.

    Article  CAS  PubMed  Google Scholar 

  8. Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol. 2018;15:8–24.

    Article  CAS  Google Scholar 

  9. Nervi C, De Marinis E, Codacci-Pisanelli G. Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenetics. 2015;7:127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wainwright EN, Scaffidi P. Epigenetics and cancer stem cells: unleashing, hijacking, and restricting cellular plasticity. Trends Cancer. 2017;3:372–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fardi M, Solali S, Hagh MF. Epigenetic mechanisms as a new approach in cancer treatment: an updated review. Genes Dis. 2018;5:304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park YJ, Claus R, Weichenhan D, Plass C. Genome-wide epigenetic modifications in cancer. In: Epigenetics disease. Basel: Springer; 2011. p. 25–49.

    Google Scholar 

  15. Vijayaraghavalu S, Dermawan JK, Cheriyath V, Labhasetwar V. Highly synergistic effect of sequential treatment with epigenetic and anticancer drugs to overcome drug resistance in breast cancer cells is mediated via activation of p21 gene expression leading to G2/M cycle arrest. Mol Pharm. 2012;10:337–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers. 2014;6:1769–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiu T, Zhou L, Zhu W, Wang T, Wang J, Shu Y, et al. Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol. 2013;9:255–69.

    Article  CAS  PubMed  Google Scholar 

  18. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu W, Sun M, Zou GM, Chen J. MicroRNA and cancer: current status and prospective. Int J Cancer. 2007;120:953–60.

    Article  CAS  PubMed  Google Scholar 

  20. Acunzo M, Romano G, Wernicke D, Croce CM. MicroRNA and cancer–a brief overview. Adv Biol Regul. 2015;57:1–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hoffmann I, Roatsch M, Schmitt ML, Carlino L, Pippel M, Sippl W, et al. The role of histone demethylases in cancer therapy. Mol Oncol. 2012;6:683–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Juergens RA. Targeting epigenetic changes in non-small cell lung cancer. The Johns Hopkins University; 2012.

  23. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gnyszka A, JastrzĘBski Z, Flis S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res. 2013;33:2989–96.

    CAS  PubMed  Google Scholar 

  25. Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123:8–13.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou L, Cheng X, Connolly BA, Dickman MJ, Hurd PJ, Hornby DP. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol. 2002;321:591–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst. 2005;97:1498–506.

    Article  CAS  PubMed  Google Scholar 

  28. Nebbioso A, Carafa V, Benedetti R, Altucci L. Trials with ‘epigenetic’drugs: an update. Mol Oncol. 2012;6:657–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. New M, Olzscha H, La Thangue NB. HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol. 2012;6:637–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cang S, Ma Y, Liu D. New clinical developments in histone deacetylase inhibitors for epigenetic therapy of cancer. J Hematol Oncol. 2009;2:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Henderson C, Mizzau M, Paroni G, Maestro R, Schneider C, Brancolini C. Role of caspases, Bid, and p53 in the apoptotic response triggered by histone deacetylase inhibitors trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA). J Biol Chem. 2003;278:12579–89.

    Article  CAS  PubMed  Google Scholar 

  32. Kim H-J, Bae S-C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res. 2011;3:166.

    CAS  PubMed  Google Scholar 

  33. Laird PW. Cancer epigenetics. Hum Mol Genet. 2005;14:R65–76.

    Article  CAS  PubMed  Google Scholar 

  34. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13:673.

    Article  CAS  PubMed  Google Scholar 

  35. Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics. 2016;8:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Song S-H, Han S-W, Bang Y-J. Epigenetic-based therapies in cancer. Drugs. 2011;71:2391–403.

    Article  CAS  PubMed  Google Scholar 

  37. Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 2014;9:3–12.

    Article  CAS  PubMed  Google Scholar 

  38. Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Suzuki H, Maruyama R, Yamamoto E, Kai M. DNA methylation and microRNA dysregulation in cancer. Mol Oncol. 2012;6:567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang Y, Tang L. The application of lncRNAs in cancer treatment and diagnosis. Recent Pat Anticancer Drug Discov. 2018;13:292–301.

    Article  CAS  PubMed  Google Scholar 

  41. Yarmishyn AA, Kurochkin IV. Long noncoding RNAs: a potential novel class of cancer biomarkers. Front Genet. 2015;6:145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Esmaeili F, Bamdad T, Ghasemi S. Stable suppression of gene expression by short interfering RNAs targeted to promoter in a mouse embryonal carcinoma stem cell line. In Vitro Cell Dev Biol Anim. 2010;46:834–40.

    Article  CAS  PubMed  Google Scholar 

  43. Ghasemi S, Lorigooini Z, Wibowo J, Amini-khoei H. Tricin isolated from Allium atroviolaceum potentiated the effect of docetaxel on PC3 cell proliferation: role of miR-21. Nat Prod Res. 2019;33:1828–31.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI‐grafted graphene oxide. Small. 2011;7:460–4.

    Article  CAS  PubMed  Google Scholar 

  45. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 2017;8:132–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Investig. 2010;120:41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alizadeh A, Ghasemi S. Importance of analyzing the genomic instability in stem cell-based therapies. J Isfahan Med Sch. 2016;34:572–9.

    Google Scholar 

  48. Muñoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncol. 2012;6:620–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Shukla S, Meeran SM. Epigenetics of cancer stem cells: pathways and therapeutics. Biochim Biophys Acta. 2014;1840:3494–502.

    Article  CAS  PubMed  Google Scholar 

  50. Klann TS, Black JB, Chellappan M, Safi A, Song L, Hilton IB, et al. CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol. 2017;35:561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Waryah CB, Moses C, Arooj M, Blancafort P Zinc fingers, TALEs, and CRISPR systems. A comparison of tools for epigenome editing. In: Epigenome. New York, NY: Humana Press. 2018. p. 19–63.

  52. McDonald JI, Celik H, Rois LE, Fishberger G, Fowler T, Rees R, et al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open. 2016;5:866–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Campbell RM, Tummino PJ. Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J Clin Investig. 2014;124:64–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L. Cancer epigenetics: moving forward. PLoS Genet. 2018;14:e1007362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Handel AE, Ebers GC, Ramagopalan SV. Epigenetics: molecular mechanisms and implications for disease. Trends Mol Med. 2010;16:7–16.

    Article  CAS  PubMed  Google Scholar 

  56. Li J, Hao D, Wang L, Wang H, Wang Y, Zhao Z, et al. Epigenetic targeting drugs potentiate chemotherapeutic effects in solid tumor therapy. Sci Rep. 2017;7:4035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Karpf AR, Jones DA. Reactivating the expression of methylation silenced genes in human cancer. Oncogene. 2002;21:5496.

    Article  CAS  PubMed  Google Scholar 

  58. Naveja JJ, Dueñas-González A, Medina-Franco JL. Drug repurposing for epigenetic targets guided by computational methods. In: Epi-Informatics. Academic Press: Elsevier; 2016. p. 327–57.

  59. Khan FA, Pandupuspitasari NS, Chun-Jie H, Ao Z, Jamal M, Zohaib A, et al. CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget. 2016;7:52541.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Sincere thanks are acknowledged to Dr Hossein Amini Khoyi for his guidance and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorayya Ghasemi.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, S. Cancer's epigenetic drugs: where are they in the cancer medicines?. Pharmacogenomics J 20, 367–379 (2020). https://doi.org/10.1038/s41397-019-0138-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0138-5

This article is cited by

Search

Quick links