Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An economic model of the cost-utility of pre-emptive genetic testing to support pharmacotherapy in patients with major depression in primary care

Abstract

The pharmacokinetics of many antidepressants (tricyclic antidepressants (TCA) or selective serotonin re-uptake inhibitors (SSRI)) are influenced by the highly polymorphic CYP2D6 enzyme. Therefore, pharmacogenetics could play an important role in the treatment of depressive patients. The potential cost-utility of screening patients is however still unknown. Therefore, a Markov model was developed to compare the strategy of screening for CYP2D6 and subsequently adjust antidepressant treatment according to a patient’s metabolizer profile of poor, extensive, or ultra metabolizer, with the strategy of no screening (‘one size fits all’ principle). Each week a patient had a probability of side effects, which was followed by dosage titration or treatment switching. After 6 weeks treatment effect was evaluated followed by treatment adjustments if necessary, with a total time horizon of the model of 12 weeks. The analysis was performed from a societal perspective. The strategy of screening compared with no screening resulted in incremental costs of €91 (95 percentiles: €39; €152) more expensive but also more effect with 0.001 quality adjusted life years (QALYs) (95 percentiles: 0.001; 0.002) gain. The incremental cost-effectiveness ratio (ICER) was therefore €77,406 per QALY gained, but varied between €22,500 and €377,500 depending on the price of screening and productivity losses. According to our model, we cannot unequivocally conclude that screening for CYP2D6 in primary care patients using antidepressants is be cost-effective, as the results are surrounded by large uncertainty. Therefore, information from ongoing studies should be used to reduce these uncertainties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO Regional Office for Europe (WHO/Europe). Mental health—data and statistics. http://www.euro.who.int/en/health-topics/noncommunicable-diseases/mental-health. Accessed 02 Feb 2017.

  2. Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E, et al. Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011;21:718–79.

    Article  CAS  Google Scholar 

  3. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry. 2004;9:442–73.

    Article  CAS  Google Scholar 

  4. Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:487–520.

    Article  Google Scholar 

  5. Spijker J, Bockting CLH, Meeuwissen JAC, Van Vliet IM, Emmelkamp PMG, Hermens MLM, et al. Multidisciplinaire richtlijn Depressie (Derde revisie). Richtlijn voor de diagnostiek, behandeling en begeleiding van volwassen patiënten met een depressieve stoornis. Utrecht: Trimbos-instituut; 2013.

    Google Scholar 

  6. Kelly K, Posternak M, Alpert JE. Toward achieving optimal response: understanding and managing antidepressant side effects. Dialogues Clin Neurosci. 2008;10:409–18.

    PubMed  PubMed Central  Google Scholar 

  7. Cheung AH, Emslie GJ, Mayes TL. Review of the efficacy and safety of antidepressants in youth depression. J Child Psychol Psychiatry. 2005;46:735–54.

    Article  Google Scholar 

  8. Kok RM, Nolen WA, Heeren TJ. Efficacy of treatment in older depressed patients: a systematic review and meta-analysis of double-blind randomized controlled trials with antidepressants. J Affect Disord. 2012;141:103–15.

    Article  CAS  Google Scholar 

  9. Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol. 2002;53:111–22.

    Article  CAS  Google Scholar 

  10. Kirchheiner J, Brosen K, Dahl ML, Gram LF, Kasper S, Roots I, et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand. 2001;104:173–92.

    Article  CAS  Google Scholar 

  11. Rau T, Wohlleben G, Wuttke H, Thuerauf N, Lunkenheimer J, Lanczik M, et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants-a pilot study. Clin Pharmacol Ther. 2004;75:386–93.

    Article  CAS  Google Scholar 

  12. Bijl MJ, Visser LE, Hofman A, Vulto AG, van Gelder T, Stricker BH, et al. Influence of the CYP2D6*4 polymorphism on dose, switching and discontinuation of antidepressants. Br J Clin Pharmacol. 2008;65:558–64.

    Article  CAS  Google Scholar 

  13. Hodgson K, Tansey K, Dernovsek MZ, Hauser J, Henigsberg N, Maier W, et al. Genetic differences in cytochrome P450 enzymes and antidepressant treatment response. J Psychopharmacol. 2014;28:133–41.

    Article  Google Scholar 

  14. Schenk PW, van Fessem MA, Verploegh-Van Rij S, Mathot RA, van Gelder T, Vulto AG, et al. Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients. Mol Psychiatry. 2008;13:597–605.

    Article  CAS  Google Scholar 

  15. Drozda K, Muller DJ, Bishop JR. Pharmacogenomic testing for neuropsychiatric drugs: current status of drug labeling, guidelines for using genetic information, and test options. Pharmacotherapy. 2014;34:166–84.

    Article  CAS  Google Scholar 

  16. Muller DJ, Kekin I, Kao AC, Brandl EJ. Towards the implementation of CYP2D6 and CYP2C19 genotypes in clinical practice: update and report from a pharmacogenetic service clinic. Int Rev Psychiatry. 2013;25:554–71.

    Article  Google Scholar 

  17. Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics. 2002;3:229–43.

    Article  CAS  Google Scholar 

  18. Van Schaik RH, Van Fessem MA, Schenk PW, Lindemans J. CYP2D6-genotypen in de Nederlandse populatie, bepaald met de Roche AmpliChip CYP450. Ned Tijdschr Klin Chem Labgeneesk. 2006;31:234–5.

    Google Scholar 

  19. Mulder H, Herder A, Wilmink FW, Tamminga WJ, Belitser SV, Egberts AC. The impact of cytochrome P450-2D6 genotype on the use and interpretation of therapeutic drug monitoring in long-stay patients treated with antidepressant and antipsychotic drugs in daily psychiatric practice. Pharmacoepidemiol Drug Saf. 2006;15:107–14.

    Article  CAS  Google Scholar 

  20. Shams ME, Arneth B, Hiemke C, Dragicevic A, Muller MJ, Kaiser R, et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther. 2006;31:493–502.

    Article  CAS  Google Scholar 

  21. Gressier F, Verstuyft C, Hardy P, Becquemont L, Corruble E. Response to CYP2D6 substrate antidepressants is predicted by a CYP2D6 composite phenotype based on genotype and comedications with CYP2D6 inhibitors. J Neural Transm. 2015;122:35–42.

    Article  CAS  Google Scholar 

  22. Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H, et al. Pharmacogenetics: from bench to byte—an update of guidelines. Clin Pharmacol Ther. 2011;89:662–73.

    Article  CAS  Google Scholar 

  23. Relling MV, Klein TE. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin Pharmacol Ther. 2011;89:464–7.

    Article  CAS  Google Scholar 

  24. Swen JJ, Guchelaar HJ. Just how feasible is pharmacogenetic testing in the primary healthcare setting? Pharmacogenomics. 2012;13:507–9.

    Article  Google Scholar 

  25. D’Empaire I, Guico-Pabia CJ, Preskorn SH. Antidepressant treatment and altered CYP2D6 activity: are pharmacokinetic variations clinically relevant? J Psychiatr Pract. 2011;17:330–9.

    Article  Google Scholar 

  26. Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526:343–50.

    Article  CAS  Google Scholar 

  27. Janssens AC, Deverka PA. Useless until proven effective: the clinical utility of preemptive pharmacogenetic testing. Clin Pharmacol Ther. 2014;96:652–4.

    Article  CAS  Google Scholar 

  28. Veenstra DL. The value of routine pharmacogenomic screening-are we there yet? A perspective on the costs and benefits of routine screening-shouldn’t everyone have this done? Clin Pharmacol Ther. 2016;99:164–6.

    Article  CAS  Google Scholar 

  29. Swen JJ, Huizinga TW, Gelderblom H, de Vries EG, Assendelft WJ, Kirchheiner J, et al. Translating pharmacogenomics: challenges on the road to the clinic. PLoS Med. 2007;4:e209.

    Article  Google Scholar 

  30. Drummond M. Methods for the economic evaluation of health care programmes. Oxford medical publications. 3rd ed. Oxford, New York: Oxford University Press; 2005. p. 379.

  31. Briggs AH, Claxton K, Sculpher MJ. Decision modelling for health economic evaluation. Oxford handbooks in health economic evaluation. Oxford: Oxford University Press; 2006. p. 237.

  32. Russell LB. Modelling for cost-effectiveness analysis. Stat Med. 1999;18:3235–44.

    Article  CAS  Google Scholar 

  33. Van Weel-Baumgarten EM, Van Gelderen MG, Grundmeijer HGLM, Licht-Strunk E, Van Marwijk HWJ, Van Rijswijk HCAM, et al. NHG-Standaard Depressie (tweede herziening). Huisarts Wet. 2012;55:252–9.

    Google Scholar 

  34. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–17.

    Article  Google Scholar 

  35. Annemans L, Brignone M, Druais S, De Pauw A, Gauthier A, Demyttenaere K. Cost-effectiveness analysis of pharmaceutical treatment options in the first-line management of major depressive disorder in Bellgium. PharmacoEconomics. 2014;32:479–93.

    Article  Google Scholar 

  36. Zorginstituut Nederland. Drug costs. http://medicijnkosten.nl/. Accessed 01 Feb 2017.

  37. Zorginstituut Nederland. Richtlijn voor het uitvoeren van economische evaluaties in de gezondheidszorg (verdiepingsmodules). 2016. p. 120. https://www.zorginstituutnederland.nl/binaries/zinl/documenten/publicatie/2016/02/29/richtlijn-voor-het-uitvoeren-van-economische-evaluaties-in-de-gezondheidszorg/Richtlijn+voor+het+uitvoeren+van+economische+evaluaties+in+de+gezondheidszorg+%28verdiepingsmodules%29.pdf.

  38. Demyttenaere K, Hemels ME, Hudry J, Annemans L. A cost-effectiveness model of escitalopram, citalopram,and venlafaxine as first-line treatment for major depressive disorder in Belgium. Clin Ther. 2005;27:111–24.

    Article  CAS  Google Scholar 

  39. De Graaf R, Ten Have M, Van Dorsselaer S. De psychische gezondheid van de Nederlandse bevolking. NEMESIS-2: Opzet en eerste resultaten. Utrecht: Trimbos-instituut; 2010.

    Google Scholar 

  40. de Graaf R, Tuithof M, van Dorsselaer S, ten Have M. Comparing the effects on work performance of mental and physical disorders. Soc Psychiatry Psychiatr Epidemiol. 2012;47:1873–83.

    Article  Google Scholar 

  41. CBS Statline. Consumer price index. http://statline.cbs.nl/. Accessed 11 Jan 2017.

  42. Koeser L, Donisi V, Goldberg DP, McCrone P. Modelling the cost-effectiveness of pharmacotherapy compared with cognitive-behavioural therapy and combination therapy for the treatment of moderate to severe depression in the UK. Psychol Med. 2015;45:3019–31.

    Article  CAS  Google Scholar 

  43. U-PGx Consortium. Ubiquitous pharmacogenomics (U-PGx). http://upgx.eu/. Accessed 06 Nov 2016.

  44. Mulder H, Wilmink FW, Beumer TL, Tamminga WJ, Jedema JN, Egberts AC. The association between cytochrome P450 2D6 genotype and prescription patterns of antipsychotic and antidepressant drugs in hospitalized psychiatric patients: a retrospective follow-up study. J Clin Psychopharmacol. 2005;25:188–91.

    Article  Google Scholar 

  45. Cipriani A, Santilli C, Furukawa TA, Signoretti A, Nakagawa A, McGuire H, et al. Escitalopram versus other antidepressive agents for depression. Cochrane Database Syst Rev. 2009; CD006532.

  46. Lobello KW, Preskorn SH, Guico-Pabia CJ, Jiang Q, Paul J, Nichols AI, et al. Cytochrome P450 2D6 phenotype predicts antidepressant efficacy of venlafaxine: a secondary analysis of 4 studies in major depressive disorder. J Clin Psychiatry. 2010;71:1482–7.

    Article  CAS  Google Scholar 

  47. Berm EJ, Looff M, Wilffert B, Boersma C, Annemans L, Vegter S, et al. Economic evaluations of pharmacogenetic and pharmacogenomic screening tests: a systematic review. Second update of the literature. PloS ONE. 2016;11:e0146262.

    Article  Google Scholar 

  48. Wallerstedt SM, Lindh JD. Prevalence of therapeutic drug monitoring for antidepressants and antipsychotics in Stockholm, Sweden: a longitudinal analysis. Ther Drug Monit. 2015;37:461–5.

    Article  Google Scholar 

  49. Preskorn SH, Kane CP, Lobello K, Nichols AI, Fayyad R, Buckley G, et al. Cytochrome P450 2D6 phenoconversion is common in patients being treated for depression: implications for personalized medicine. J Clin Psychiatry. 2013;74:614–21.

    Article  CAS  Google Scholar 

Download references

Funding

An unrestricted grant was received from Royal Dutch Pharmacists Association (KNMP), The Hague, in The Netherlands. The funding body had no role in the analysis or interpretation of the findings of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinier L. Sluiter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sluiter, R.L., Janzing, J.G.E., van der Wilt, G.J. et al. An economic model of the cost-utility of pre-emptive genetic testing to support pharmacotherapy in patients with major depression in primary care. Pharmacogenomics J 19, 480–489 (2019). https://doi.org/10.1038/s41397-019-0070-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0070-8

This article is cited by

Search

Quick links