Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The keratin 17/YAP/IL6 axis contributes to E-cadherin loss and aggressiveness of diffuse gastric cancer

Abstract

DGC is a particular aggressive malignancy with poor prognosis. Recent omics studies characterized DGC with CDH1/E-cadherin loss and EMT-signatures. However, the underlying mechanisms for maintaining the aggressive behavior and molecular features of DGC remain unclear. Here, we find that intermediate filaments KRT17 is significantly lower in DGC tissues than that in intestinal gastric cancer tissues and associated with poor prognosis of DGC. We demonstrate that downregulation of KRT17 induces E-cadherin loss, EMT changes, and metastasis behaviors of GC cells. Mechanistically, the loss of intermediate filaments KRT17 induces reorganization of cytoskeleton, further activates YAP signaling, and increases IL6 expression, which contributes to the enhanced metastasis ability of GC cells. Together, these results indicate that KRT17/YAP/IL6 axis contributes to maintaining E-cadherin loss, EMT feature, and metastasis of DGC, providing a new insight into the role of aberrant intermediate filaments in DGC malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Downregulation of KRT17 is associated with worse survival of DGC patients, EMT and metastasis.
Fig. 2: Knockout of KRT17 increases EMT changes, migration and metastasis of GC cells.
Fig. 3: Knockout of KRT17 enhances stem-like properties of GC cells.
Fig. 4: Knockout of KRT17 activates YAP signaling in GC cells.
Fig. 5: IL6 mediates the improvement of EMT, stem-like property and metastatic ability of GC cells induced by KRT17 knockout.
Fig. 6: Down-regulation of KRT17 is associated with malignant progression of GC.

Similar content being viewed by others

Data availability

The accession number of RNA-sequencing raw data in this study is No. GSE171879.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. APMIS. 1965;64:31–49.

    CAS  Google Scholar 

  3. Henson DE, Dittus C, Younes M, Nguyen H, Alboressaavedra J. Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973–2000: increase in the signet ring cell type. Arch Pathol Lab Med. 2009;128:765–70.

    Google Scholar 

  4. Lee JY, Gong EJ, Chung EJ, Park HW, Bae SE, Kim EH, et al. The characteristics and prognosis of diffuse-type early gastric cancer diagnosed during health check-ups. Gut Liver. 2017;11:807–12.

    PubMed  PubMed Central  Google Scholar 

  5. Cristescu R, Lee J, Nebozhyn M, Kim K, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21:449–56.

    CAS  PubMed  Google Scholar 

  6. Bass AJ, Thorsson V, Shmulevich I, Reynolds S, Miller M, Bernard B, et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513:202–9.

    Google Scholar 

  7. Mun DG, Bhin J, Kim S, Kim H, Jung JH, Jung Y, et al. Proteogenomic characterization of human early-onset gastric cancer. Cancer Cell. 2019;35:111.

    CAS  PubMed  Google Scholar 

  8. Ge S, Xia X, Ding C, Zhen B, Zhou Q, Feng J, et al. A proteomic landscape of diffuse-type gastric cancer. Nat Commun. 2018;9:1012.

    PubMed  PubMed Central  Google Scholar 

  9. Harvey KF, Zhang X, Thomas DM. The hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    CAS  PubMed  Google Scholar 

  10. Johnson RL, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014;13:63–79.

    CAS  PubMed  Google Scholar 

  11. Park J, Kim DH, Shah SR, Kim HN, Kshitiz, Kim P, et al. Switch-like enhancement of epithelial-mesenchymal transition by YAP through feedback regulation of WT1 and Rho-family GTPases. Nat Commun. 2019; 10: 2797.

  12. Yang N, Chen T, Wang L, Liu R, Niu Y, Sun L. et al. CXCR4 mediates matrix stiffness-induced downregulation of UBTD1 driving hepatocellular carcinoma progression via YAP signaling pathway. Theranostics. 2020;10:5790–5801.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, et al. The hippo transducer taz confers cancer stem cell-related traits on breast cancer cells. Cell 2011;147:759–72.

    CAS  PubMed  Google Scholar 

  14. Qi YJ, Jiao YL, Chen P, Kong JY, Gu BL, Liu K. et al. Porphyromonas gingivalis promotes progression of esophageal squamous cell cancer via TGFá-dependent Smad/YAP/TAZ signaling. PLoS Biol. 2020;18:e3000825.

    PubMed  PubMed Central  Google Scholar 

  15. Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepemooney B, Gurung B, et al. Hippo pathway activity influences liver cell fate. Cell 2014;157:1324–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao B, Li L, Wang LH, Wang C, Yu J, Guan K. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 2012;26:54–68.

    PubMed  PubMed Central  Google Scholar 

  17. Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X, et al. A peptide mimicking VGLL4 function acts as a yap antagonist therapy against gastric cancer. Cancer Cell. 2014;25:166–80.

    CAS  PubMed  Google Scholar 

  18. Kang W, Tong JHM, Chan AWH, Lee T-L, Lung RWM, Leung PPS, et al. Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis. Clin Cancer Res. 2011;17:2130–9.

    CAS  PubMed  Google Scholar 

  19. Zhang H, Schaefer A, Wang Y, Hodge RG, Blake DR, Diehl JN. et al. Gain-of-function RHOA mutations promote focal adhesion kinase activation and dependency in diffuse gastric cancer. Cancer Discov. 2020;10:288–305.

    CAS  PubMed  Google Scholar 

  20. Yang T, Gemin F, Fenghua G, Hui Z, Xiaoxu C, Liwei A. et al. Selective inhibition of strn3-containing pp2a phosphatase restores hippo tumor-suppressor activity in gastric cancer. Cancer Cell. 2020;38:115–128.e9.

    Google Scholar 

  21. Choi W, Kim J, Park J, Lee D-H, Hwang D, Kim J-H. et al. YAP/TAZ initiates gastric tumorigenesis via upregulation of MYC. Cancer Res. 2018;78:3306–20.

    CAS  PubMed  Google Scholar 

  22. Huang C, Yuan W, Lai C, Zhong S, Yang C, Wang R, et al. Epha2-to-yap pathway drives gastric cancer growth and therapy resistance. Int J Cancer. 2020;146:1937–49.

    CAS  PubMed  Google Scholar 

  23. Jiao S, Guan J, Chen M, Wang W, Li C, Wang Y, et al. Targeting IRF3 as a yap agonist therapy against gastric cancer. J Exp Med. 2018;215:699–718.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Robinson BS, Huang J, Hong Y, Moberg KH. Crumbs regulates Salvador/Warts/Hippo signaling in drosophila via the ferm-domain protein expanded. Curr Biol. 2010;20:582–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mohseni M, Sun J, Lau AN, Curtis SJ, Goldsmith JD, Fox VL, et al. A genetic screen identifies an LKB1–MARK signalling axis controlling the Hippo–YAP pathway. Nat Cell Biol. 2014;16:108–17.

    CAS  PubMed  Google Scholar 

  26. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of yap oncoprotein by the hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yue T, Tian A, Jiang J. The cell adhesion molecule echinoid functions as a tumor suppressor and upstream regulator of the hippo signaling pathway. Dev Cell. 2012;22:255–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu F-X, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, et al. Regulation of the hippo-yap pathway by g-protein-coupled receptor signaling. Cell 2012;150:780–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou X, Wang S, Wang Z, Feng X, Liu P, Lv XB, et al. Estrogen regulates Hippo signaling via GPER in breast cancer. J Clin Investig. 2015;125:2123–35.

    PubMed  PubMed Central  Google Scholar 

  30. Park HW, Kim Y, Yu B, Moroishi T, Mo J, Plouffe SW, et al. Alternative WNT signaling activates YAP/TAZ. Cell 2015;162:780–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 2013;154:1047–59.

    CAS  PubMed  Google Scholar 

  32. Kim HJ, Choi WJ, Lee CH. Phosphorylation and reorganization of keratin networks: Implications for carcinogenesis and epithelial mesenchymal transition. Biomol Ther. 2015;23:301–12.

    CAS  Google Scholar 

  33. Kurokawa I, Takahashi K, Moll I, Moll R. Expression of keratins in cutaneous epithelial tumors and related disorders–distribution and clinical significance. Exp Dermatol. 2011;20:217–28.

    PubMed  Google Scholar 

  34. Proby CM, Churchill LJ, Purkis PE, Glover MT, Sexton CJ, Leigh IM. Keratin 17 expression as a marker for epithelial transformation in viral warts. Am J Pathol. 1993;143:1667–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hobbs RP, Batazzi AS, Han MC, Coulombe PA. Loss of keratin 17 induces tissue-specific cytokine polarization and cellular differentiation in hpv16-driven cervical tumorigenesis in vivo. Oncogene 2016;35:5653–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chivueconomescu M, Dragu DL, Necula LG, Matei L, Enciu A, Bleotu C, et al. Knockdown of KRT17 by siRNA induces antitumoral effects on gastric cancer cells. Gastric Cancer. 2017;20:948–59.

    CAS  Google Scholar 

  37. Hu H, Xu D, Huang X, Zhu C, Xu J, Zhang Z, et al. Keratin17 promotes tumor growth and is associated with poor prognosis in gastric cancer. J Cancer. 2018;9:346–57.

    PubMed  PubMed Central  Google Scholar 

  38. Ide M, Kato T, Ogata K, Mochiki E, Kuwano H, Oyama T. Keratin 17 expression correlates with tumor progression and poor prognosis in gastric adenocarcinoma. Ann Surg Oncol. 2012;19:3506–14.

    PubMed  Google Scholar 

  39. Chivu Economescu M, Necula LG, Dragu D, Badea L, Dima SO, Tudor S, et al. Identification of potential biomarkers for early and advanced gastric adenocarcinoma detection. Hepatogastroenterology. 2010;57:1453–64.

    PubMed  Google Scholar 

  40. Khanom R, Nguyen CTK, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 is induced in oral cancer and facilitates tumor growth. PLOS ONE. 2016; 11.

  41. Wang Z, Yang M, Lei L, Fei L, Zheng Y, Huang W, et al. Overexpression of KRT17 promotes proliferation and invasion of non-small cell lung cancer and indicates poor prognosis. Cancer Manag Res. 2019;11:7485–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li D, Ni X, Tang H, Zhang J, Zheng C, Lin J, et al. KRT17 functions as a tumor promoter and regulates proliferation, migration and invasion in pancreatic cancer via mTOR/S6k1 pathway. Cancer Manag Res. 2020;12:2087–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Z, Yu S, Ye S, Shen Z, Gao L, Han Z, et al. Keratin 17 activates AKT signalling and induces epithelial-mesenchymal transition in oesophageal squamous cell carcinoma. J Proteom. 2020;211:103557.

    CAS  Google Scholar 

  44. Becker KF, Atkinson MJ, Reich U, Becker I, Nekarda H, Siewert JR, et al. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 1994;54:3845–52.

    CAS  PubMed  Google Scholar 

  45. Cho SY, Park JW, Liu Y, Park YS, Kim JH, Yang H, et al. Sporadic early-onset diffuse gastric cancers have high frequency of somatic CDH1 alterations, but low frequency of somatic RHOA mutations compared with late-onset cancers. Gastroenterology 2017;153:536.

    CAS  PubMed  Google Scholar 

  46. Shimada S, Mimata A, Sekine M, Mogushi K, Akiyama Y, Fukamachi H, et al. Synergistic tumour suppressor activity of E-cadherin and p53 in a conditional mouse model for metastatic diffuse-type gastric cancer. Gut 2012;61:344–53.

    CAS  PubMed  Google Scholar 

  47. Xu X, Qian L, Su X, He K, Jin K, Gu L, et al. Establishment and characterization of gcsr1, a multi-drug resistant signet ring cell gastric cancer cell line. Int J Oncol. 2015;46:2479–87.

    CAS  PubMed  Google Scholar 

  48. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011;27:1739–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nelson WJ. Adaptation of core mechanisms to generate cell polarity. Nature 2003;422:766–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol. 2014;15:225–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu F, Zhao B, Guan K. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163:811–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol. 2016;17:914–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, Chen D, Zhang Y, Wang P, Zheng C, Zhang S, et al. Novel adipokine, FAM19A5, inhibits neointima formation after injury through sphingosine-1-phosphate receptor 2. Circulation 2018;138:48–63.

    CAS  PubMed  Google Scholar 

  54. Shintani Y, Fujiwara A, Kimura T, Kawamura T, Funaki S, Minami M, et al. Il-6 secreted from cancer-associated fibroblasts mediates chemoresistance in NSCLC by increasing epithelial-mesenchymal transition signaling. J Thorac Oncol. 2016;11:1482–92.

    PubMed  Google Scholar 

  55. Kim T, Yang SJ, Hwang D, Song J, Kim M, Kim SK, et al. A basal-like breast cancer-specific role for SRF–il6 in YAP-induced cancer stemness. Nat Commun. 2015;6:10186–10186.

    CAS  PubMed  Google Scholar 

  56. Weng Y, Tseng H, Chen Y, Shen P, Haq ATA, Chen L, et al. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer. 2019;18:42.

    PubMed  PubMed Central  Google Scholar 

  57. Coccolini F, Gheza F, Lotti M, Virzì S, Iusco D, Ghermandi C, et al. Peritoneal carcinomatosis. World J Gastroenterol. 2013;19:6979–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee JH, Chang KK, Yoon C, Tang LH, Strong VE, Yoon SS. Lauren histologic type is the most important factor associated with pattern of recurrence following resection of gastric adenocarcinoma. Ann Surg. 2018;267:105–13.

    PubMed  Google Scholar 

  59. Fitzgerald RC, Hardwick R, Huntsman D, Carneiro F, Guilford P, Blair V, et al. Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet. 2010;47:436–44.

    CAS  PubMed  Google Scholar 

  60. Oliveira C, Pinheiro H, Figueiredo J, Seruca R, Carneiro F. Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncol. 2015;16:e60–e70.

    PubMed  Google Scholar 

  61. Corso G, Carvalho J, Marrelli D, Vindigni C, Carvalho B, Seruca R, et al. Somatic mutations and deletions of the E-cadherin gene predict poor survival of patients with gastric cancer. J Clin Oncol. 2013;31:868–75.

    CAS  PubMed  Google Scholar 

  62. Lee KH, Hwang D, Kang KY, Lee S, Kim DY, Joo YE, et al. Frequent promoter methylation of cdh1 in non-neoplastic mucosa of sporadic diffuse gastric cancer. Anticancer Res. 2013;33:3765–74.

    CAS  PubMed  Google Scholar 

  63. Quinn JJ, Jones MG, Okimoto RA, Nanjo S, Chan MM, Yosef N, et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science. 2021; 371.

  64. van der Post RS, Vogelaar IP, Carneiro F, Guilford P, Huntsman D, Hoogerbrugge N, et al. Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline cdh1 mutation carriers. J Med Genet. 2015;52:361–74.

    PubMed  Google Scholar 

  65. Mahmud N, Ford JM, Longacre TA, Parent R, Norton JA. Metastatic lobular breast carcinoma mimicking primary signet ring adenocarcinoma in a patient with a suspected CDH1 mutation. J Clin Oncol. 2015;33:e19–e21.

    PubMed  Google Scholar 

  66. Lin M-T, Zuon C-Y, Chang C-C, Chen S-T, Chen C-P, Lin B-R, et al. Cyr61 induces gastric cancer cell motility/invasion via activation of the integrin/nuclear factor-kappaB/cyclooxygenase-2 signaling pathway. Clin Cancer Res. 2005;11:5809–20.

    CAS  PubMed  Google Scholar 

  67. Yoon C, Cho S, Aksoy BA, Park DJ, Schultz N, Ryeom S, et al. Chemotherapy resistance in diffuse type gastric adenocarcinoma is mediated by RhoA activation in cancer stem-like cells. Clin Cancer Res. 2016;22:971–83.

    CAS  PubMed  Google Scholar 

  68. Benham-Pyle BW, Pruitt BL, Nelson WJ. Cell adhesion. Mechanical strain induces e-cadherin-dependent yap1 and β-catenin activation to drive cell cycle entry. Science. 2015;348:1024–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mo J-S, Meng Z, Kim YC, Park HW, Hansen CG, Kim S, et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol. 2015;17:500–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 2015;34:1349–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fan R, Kim N-G, Gumbiner BM. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci USA. 2013;110:2569–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Reddy BV, Irvine KD. Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev Cell. 2013;24:459–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lim HYG, Alvarez YD, Gasnier M, Wang Y, Tetlak P, Bissiere S, et al. Keratins are asymmetrically inherited fate determinants in the mammalian embryo. Nature 2020;585:404–9.

    CAS  PubMed  Google Scholar 

  74. Eliazer S, Muncie JM, Christensen J, Sun X, D’Urso RS, Weaver VM, et al. Wnt4 from the niche controls the mechano-properties and quiescent state of muscle stem cells. Cell Stem Cell. 2019; 25.

  75. Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol. 2014;16:357–66.

    CAS  PubMed  Google Scholar 

  76. Wang Z, Wu Y, Wang H, Zhang Y, Mei L, Fang X. et al. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci U S A. 2014;111:E89–E98.

    CAS  PubMed  Google Scholar 

  77. Wang K, Yuen ST, Xu J, Lee SP, Yan HHN, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.

    CAS  PubMed  Google Scholar 

  78. Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A, et al. Recurrent gain-of-function mutations of RhoA in diffuse-type gastric carcinoma. Nat Genet. 2014;46:583–7.

    CAS  PubMed  Google Scholar 

  79. Ham IH, Oh HJ, Jin H, Bae CA, Jeon SM, Choi KS, et al. Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol Cancer. 2019;18:68.

    PubMed  PubMed Central  Google Scholar 

  80. Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013;23:720–3.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Hai Song for providing pcDNA3.1-YAP plasmid. This work was supported by the National Natural Science Foundation of China (31771540, 81972276, 82173040, 91740205, 31620103911), Natural Scientific Foundation of Zhejiang Province, China (LYY19H310011), Fundamental Research Funds for the Central Universities (2021QNA7004).

Author information

Authors and Affiliations

Authors

Contributions

WZ, TZ, ML and XR designed the experiments and interpreted the results. ML, XR, YC, XL, YZ performed the experiments. ML, LZ, and XR performed the animal experiments. ML, XR, BW, LT analyzed the clinical data. TZ improved the project design. ML, WZ wrote the manuscript, which was further refined by all authors. WZ supervised the overall study.

Corresponding authors

Correspondence to Tianhua Zhou or Wei Zhuo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Rao, X., Cui, Y. et al. The keratin 17/YAP/IL6 axis contributes to E-cadherin loss and aggressiveness of diffuse gastric cancer. Oncogene 41, 770–781 (2022). https://doi.org/10.1038/s41388-021-02119-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02119-3

This article is cited by

Search

Quick links