Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytochrome P450 1A2 overcomes nuclear factor kappa B-mediated sorafenib resistance in hepatocellular carcinoma

Abstract

Sorafenib resistance has become the main obstacle in the effective treatment of advanced hepatocellular carcinoma (HCC) patients. Activation of nuclear factor kappa B (NF‐κB) is a newly identified mechanism that contributes to desensitized sorafenib. Cytochrome P450 1A2 (CYP1A2) functions as a tumor suppressor in HCC and its expression is negatively associated with NF‐κB in the liver. This study aimed to study whether CYP1A2 could overcome sorafenib resistance. To investigate whether CYP1A2 and NF‐κB p65 played roles in sorafenib desensitization, we established sorafenib-resistant (SR) HCC cells. SR cells decreased the expression of CYP1A2 along with the upregulation of NF‐κB p65. CYP1A2 overexpression attenuated SR cell proliferation, increased sorafenib sensitivity, and inhibited the NF‐κB pathway, whereas CYP1A2 silence showed opposite effects. Sorafenib, in combination with omeprazole, a CYP1A2 inducer, significantly hindered the growth and invasion of SR cells in vitro as well as decreased the tumor growth in vivo. The combination treatment markedly increased CYP1A2 expression and inhibited the sorafenib-induced NF‐κB signaling. In addition, the overexpression of NF‐κB p65 stimulated the SR cell growth and desensitized sorafenib in SR cells, where CYP1A2 overexpression reversed the phenomenon. Lastly, the majority of HCC tissue samples displayed decreased CYP1A2 but increased NF‐κB p65 protein expression. Collectively, CYP1A2 can sensitize SR cells to sorafenib via inhibiting NF‐κB p65 axis. Omeprazole in combination with sorafenib exerts a synergistic effect in alleviating acquired sorafenib resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CYP1A2 inhibits cell growth and sensitizes sorafenib-resistant (SR) PLC/PRF/5 and Huh7 cells to sorafenib.
Fig. 2: Omeprazole in combination with sorafenib inhibits tumor growth in vitro and in vivo.
Fig. 3: Omeprazole-sorafenib combination hinders SR cell growth in vitro.
Fig. 4: Omeprazole suppresses sorafenib-mediated NF‐κB p65 induction.
Fig. 5: CYP1A2 overexpression abrogates NF‐κB p65-induced cell growth and resistance to sorafenib.
Fig. 6: The interaction between CYP1A2 and NF‐κB in SR cells.
Fig. 7: Expression of CYP1A2 and NF‐κB p65 in HCC patients and potential mechanism responsible for omeprazole to overcome the resistance to sorafenib in HCC treatment.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Google Scholar 

  2. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    CAS  Google Scholar 

  3. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl J Med. 2008;359:378–90.

    CAS  PubMed  Google Scholar 

  4. Ray EM, Sanoff HK. Optimal therapy for patients with hepatocellular carcinoma and resistance or intolerance to sorafenib: challenges and solutions. J Hepatocell Carcinoma. 2017;4:131–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu YJ, Zheng B, Wang HY, Chen L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharm Sin. 2017;38:614–22.

    CAS  Google Scholar 

  6. Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell. 2017;168:37–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Taniguchi K, Karin MNF-kappaB. inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

    CAS  PubMed  Google Scholar 

  8. Lo J, Lau EY, Ching RH, Cheng BY, Ma MK, Ng IO, et al. Nuclear factor kappa B-mediated CD47 up-regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice. Hepatology. 2015;62:534–45.

    CAS  PubMed  Google Scholar 

  9. Liang L, Wu J, Luo J, Wang L, Chen ZX, Han CL, et al. Oxymatrine reverses 5-fluorouracil resistance by inhibition of colon cancer cell epithelial-mesenchymal transition and NF-kappaB signaling in vitro. Oncol Lett. 2020;19:519–26.

    CAS  PubMed  Google Scholar 

  10. Wang Y, Jiang F, Jiao K, Ju L, Liu Q, Li Y, et al. De-methylation of miR-148a by arsenic trioxide enhances sensitivity to chemotherapy via inhibiting the NF-kappaB pathway and CSC like properties. Exp Cell Res. 2020;386:111739.

    CAS  PubMed  Google Scholar 

  11. Neelgundmath M, Dinesh KR, Mohan CD, Li F, Dai X, Siveen KS, et al. Novel synthetic coumarins that targets NF-kappaB in Hepatocellular carcinoma. Bioorg Med Chem Lett. 2015;25:893–7.

    CAS  PubMed  Google Scholar 

  12. Qiu Y, Dai Y, Zhang C, Yang Y, Jin M, Shan W, et al. Arsenic trioxide reverses the chemoresistance in hepatocellular carcinoma: a targeted intervention of 14-3-3eta/NF-kappaB feedback loop. J Exp Clin Cancer Res. 2018;37:321.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jing H, Shen G, Wang G, Zhang F, Li Y, Luo F, et al. MG132 alleviates liver injury induced by intestinal ischemia/reperfusion in rats: involvement of the AhR and NFkappaB pathways. J Surg Res. 2012;176:63–73.

    CAS  PubMed  Google Scholar 

  14. Ren J, Chen GG, Liu Y, Su X, Hu B, Leung BC, et al. Cytochrome P450 1A2 metabolizes 17beta-Estradiol to suppress hepatocellular carcinoma. PLoS One. 2016;11:e0153863.

    PubMed  PubMed Central  Google Scholar 

  15. Kuo HP, Wang Z, Lee DF, Iwasaki M, Duque-Afonso J, Wong SH, et al. Epigenetic roles of MLL oncoproteins are dependent on NF-kappaB. Cancer Cell. 2013;24:423–37.

    CAS  PubMed  Google Scholar 

  16. Hellum BH, Hu Z, Nilsen OG. The induction of CYP1A2, CYP2D6 and CYP3A4 by six trade herbal products in cultured primary human hepatocytes. Basic Clin Pharm Toxicol. 2007;100:23–30.

    CAS  Google Scholar 

  17. Xu Y, Huang J, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways. Cancer Lett. 2016;371:171–81.

    CAS  PubMed  Google Scholar 

  18. Galmiche A, Chauffert B, Barbare JC. New biological perspectives for the improvement of the efficacy of sorafenib in hepatocellular carcinoma. Cancer Lett. 2014;346:159–62.

    CAS  PubMed  Google Scholar 

  19. Li F, Sethi G. Targeting transcription factor NF-kappaB to overcome chemoresistance and radioresistance in cancer therapy. Biochim Biophys Acta. 2010;1805:167–80.

    CAS  PubMed  Google Scholar 

  20. Chen JC, Chuang HY, Hsu FT, Chen YC, Chien YC, Hwang JJ. Sorafenib pretreatment enhances radiotherapy through targeting MEK/ERK/NF-kappaB pathway in human hepatocellular carcinoma-bearing mouse model. Oncotarget. 2016;7:85450–63.

    PubMed  PubMed Central  Google Scholar 

  21. Li J, Zhou Y, Liu Y, Dai B, Zhang YH, Zhang PF, et al. Sorafenib inhibits caspase-1 expression through suppressing TLR4/stat3/SUMO1 pathway in hepatocellular carcinoma. Cancer Biol Ther. 2018;19:1057–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dudgeon C, Peng R, Wang P, Sebastiani A, Yu J, Zhang L. Inhibiting oncogenic signaling by sorafenib activates PUMA via GSK3beta and NF-kappaB to suppress tumor cell growth. Oncogene. 2012;31:4848–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu JM, Sheng H, Saxena R, Skill NJ, Bhat-Nakshatri P, Yu M, et al. NF-kappaB inhibition in human hepatocellular carcinoma and its potential as adjunct to sorafenib based therapy. Cancer Lett. 2009;278:145–55.

    CAS  PubMed  Google Scholar 

  24. Tatebe S. Cardiologists and the management of obstetric venous thromboembolism. Circ J. 2015;79:1215–7.

    PubMed  Google Scholar 

  25. Chen H, Shen ZY, Xu W, Fan TY, Li J, Lu YF, et al. Expression of P450 and nuclear receptors in normal and end-stage Chinese livers. World J Gastroenterol. 2014;20:8681–90.

    PubMed  PubMed Central  Google Scholar 

  26. Liu ZZ, Yan LN, Dong CN, Ma N, Yuan MN, Zhou J, et al. Cytochrome P450 family members are associated with fast-growing hepatocellular carcinoma and patient survival: an integrated analysis of gene expression profiles. Saudi J Gastroenterol. 2019;25:167–75.

    PubMed  PubMed Central  Google Scholar 

  27. Frucht H, Maton PN, Jensen RT. Use of omeprazole in patients with Zollinger-Ellison syndrome. Dig Dis Sci. 1991;36:394–404.

    CAS  PubMed  Google Scholar 

  28. Martin de Argila C. Safety of potent gastric acid inhibition. Drugs. 2005;65:97–104.

    CAS  PubMed  Google Scholar 

  29. Chen CH, Lee CZ, Lin YC, Kao LT, Lin HC. Negative association of proton pump inhibitors with subsequent development of breast cancer: a nationwide population-based study. J Clin Pharm. 2019;59:350–5.

    CAS  Google Scholar 

  30. Papagerakis S, Bellile E, Peterson LA, Pliakas M, Balaskas K, Selman S, et al. Proton pump inhibitors and histamine 2 blockers are associated with improved overall survival in patients with head and neck squamous carcinoma. Cancer Prev Res. 2014;7:1258–69.

    CAS  Google Scholar 

  31. Luciani F, Spada M, De Milito A, Molinari A, Rivoltini L, Montinaro A, et al. Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst. 2004;96:1702–13.

    CAS  PubMed  Google Scholar 

  32. Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharm Res. 2019;150:104511.

    CAS  Google Scholar 

  33. Taylor S, Spugnini EP, Assaraf YG, Azzarito T, Rauch C, Fais S. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist Updat. 2015;23:69–78.

    PubMed  Google Scholar 

  34. MacNab GM, Alexander JJ, Lecatsas G, Bey EM, Urbanowicz JM. Hepatitis B surface antigen produced by a human hepatoma cell line. Br J Cancer. 1976;34:509–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Blight KJ, McKeating JA, Rice CM. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol. 2002;76:13001–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sainz B Jr., TenCate V, Uprichard SL. Three-dimensional Huh7 cell culture system for the study of Hepatitis C virus infection. Virol J. 2009;6:103.

    PubMed  PubMed Central  Google Scholar 

  37. Chirillo P, Falco M, Puri PL, Artini M, Balsano C, Levrero M, et al. Hepatitis B virus pX activates NF-kappa B-dependent transcription through a Raf-independent pathway. J Virol. 1996;70:641–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Su F, Schneider RJ. Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol. 1996;70:4558–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Weil R, Sirma H, Giannini C, Kremsdorf D, Bessia C, Dargemont C, et al. Direct association and nuclear import of the hepatitis B virus X protein with the NF-kappaB inhibitor IkappaBalpha. Mol Cell Biol. 1999;19:6345–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin W, Tsai WL, Shao RX, Wu G, Peng LF, Barlow LL, et al. Hepatitis C virus regulates transforming growth factor beta1 production through the generation of reactive oxygen species in a nuclear factor kappaB-dependent manner. Gastroenterology. 2010;138:2509-18–2518 e2501.

    Google Scholar 

  41. Waris G, Livolsi A, Imbert V, Peyron JF, Siddiqui A. Hepatitis C virus NS5A and subgenomic replicon activate NF-kappaB via tyrosine phosphorylation of IkappaBalpha and its degradation by calpain protease. J Biol Chem. 2003;278:40778–87.

    CAS  PubMed  Google Scholar 

  42. Yamada T, Abei M, Danjoh I, Shirota R, Yamashita T, Hyodo I, et al. Identification of a unique hepatocellular carcinoma line, Li-7, with CD13(+) cancer stem cells hierarchy and population change upon its differentiation during culture and effects of sorafenib. BMC Cancer. 2015;15:260.

    PubMed  PubMed Central  Google Scholar 

  43. Haibe-Kains B, El-Hachem N, Birkbak NJ, Jin AC, Beck AH, Aerts HJ, et al. Inconsistency in large pharmacogenomic studies. Nature. 2013;504:389–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen ZT, Chen Y, Huang GC, Zhu XX, Wang R, Chen LB. Aurora-a confers radioresistance in human hepatocellular carcinoma by activating NF-kappaB signaling pathway. BMC Cancer. 2019;19:1075.

    PubMed  PubMed Central  Google Scholar 

  45. Xie C, Zhang LZ, Chen ZL, Zhong WJ, Fang JH, Zhu Y et al. A hMTR4-PDIA3P1-miR-125/124-TRAF6 regulatory axis and its function in NF kappa B signaling and chemoresistance. Hepatology. 2020;71:1660–77.

  46. Wang N, Li MY, Liu Y, Yu J, Ren J, Zheng Z, et al. ZBP-89 negatively regulates self-renewal of liver cancer stem cells via suppression of Notch1 signaling pathway. Cancer Lett. 2020;472:70–80.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank technical supports from Dr. Jianwei Ren, Mr. Rocky Lok-kee Ho and Ms. Suk-ying Chun. This study was supported by a grant from the Research Grants Council of the Hong Kong SAR, CUHK14117015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George Gong Chen or Paul Bo San Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Wang, N., Gong, Z. et al. Cytochrome P450 1A2 overcomes nuclear factor kappa B-mediated sorafenib resistance in hepatocellular carcinoma. Oncogene 40, 492–507 (2021). https://doi.org/10.1038/s41388-020-01545-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01545-z

This article is cited by

Search

Quick links