Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wnt5a and ROR1 activate non-canonical Wnt signaling via RhoA in TCF3-PBX1 acute lymphoblastic leukemia and highlight new treatment strategies via Bcl-2 co-targeting

Abstract

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with TCF3-PBX1 fusion gene expression has constitutively elevated levels of Wnt16b and ROR1 (receptor tyrosine kinase-like orphan receptor), a ligand and a receptor from the Wnt signaling pathway, respectively. Although survival rate is usually high after the initial chemotherapy, many TCF3-PBX1 BCP-ALL patients relapse and subsequently develop treatment resistance, resulting in poor prognosis. Here, we aimed to investigate the molecular signaling associated with Wnt16b and ROR1 overexpression in TCF3-PBX1 cell lines and primary samples, and to identify effective treatment options via ROR1 targeting. We detected higher ROR1 expression on TCF3-PBX1 leukemic cells even at a later stage of patient relapse, providing a strong rationale for the use of ROR1-targeted therapy. We found that Wnt5a-ROR1 signaling enhances proliferation of TCF3-PBX1 cells via RhoA/Rac1 GTPases activation and STAT3 upregulation. Wnt16b also activated the RhoA/Rac1 signaling cascade suggesting the activation of a non-canonical Wnt pathway in TCF3-PBX1 cells. Wnt16 could interact with ROR1 but not in TCF3-PBX1 cells, suggesting that Wnt5a is the ligand signaling via ROR1 in TCF3-PBX1 cells. By high throughput drug-sensitivity testing of TCF3-PBX1 cells before and after ROR1 knockdown we found that targeting ROR1 significantly improves the therapeutic efficacy of Bcl-2 family inhibitors venetoclax and navitoclax, and this synergism was confirmed ex vivo using a drug-resistant primary sample from a relapsed TCF3-PBX1 patient. Our work underlines a new type of targeted combination therapy that could be clinically advantageous for patients with TCF3-PBX1 BCP-ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pui C-H, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med. 2004;350:1535–48.

    Article  CAS  Google Scholar 

  2. Burmeister T, Gökbuget N, Schwartz S, Fischer L, Hubert D, Sindram A, et al. Clinical features and prognostic implications of TCF3-PBX1 and ETV6-RUNX1 in adult acute lymphoblastic leukemia. Haematologica. 2010;95:241–6.

    Article  CAS  Google Scholar 

  3. Geng H, Hurtz C, Lenz KB, Chen Z, Baumjohann D, Thompson S, et al. Self-enforcing feedback activation between BCL6 and pre-B cell receptor signaling defines a distinct subtype of acute lymphoblastic leukemia. Cancer Cell. 2015;27:409–25.

    Article  CAS  Google Scholar 

  4. Müschen M. Rationale for targeting the pre-B-cell receptor signaling pathway in acute lymphoblastic leukemia. Blood. 2015;125:3688–93.

    Article  Google Scholar 

  5. Mazieres J, You L, He B, Xu Z, Lee AY, Mikami I, et al. Inhibition of Wnt16 in human acute lymphoblastoid leukemia cells containing the t(1;19) translocation induces apoptosis. Oncogene. 2005;24:5396–400.

    Article  CAS  Google Scholar 

  6. Bicocca VT, Chang BH, Masouleh BK, Muschen M, Loriaux MM, Druker BJ, et al. Crosstalk between ROR1 and the Pre-B cell receptor promotes survival of t(1;19) acute lymphoblastic leukemia. Cancer Cell. 2012;22:656–67.

    Article  CAS  Google Scholar 

  7. Staal FJT, Clevers HC. WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol. 2005;5:21–30.

    Article  CAS  Google Scholar 

  8. Janovská P, Bryja V. WNT signaling pathways in chronic lymphocytic leukemia and B cell lymphomas. Br J Pharmacol. 2017. https://doi.org/10.1111/bph.13949

    Article  PubMed  PubMed Central  Google Scholar 

  9. Borcherding N, Kusner D, Liu G-H, Zhang W. ROR1, an embryonic protein with an emerging role in cancer biology. Protein Cell. 2014;5:496–502.

    Article  CAS  Google Scholar 

  10. Balakrishnan A, Goodpaster T, Randolph-Habecker J, Hoffstrom BG, Jalikis FG, Koch LK, et al. Analysis of ROR1 protein expression in human cancer and normal tissues. Clin Cancer Res. 2016; clincanres.2083.2016.

  11. Karvonen H, Niininen W, Murumägi A, Ungureanu D. Targeting ROR1 identifies new treatment strategies in hematological cancers. Biochem Soc Trans. 2017;45:457–64.

    Article  CAS  Google Scholar 

  12. Murphy JM, Zhang Q, Young SN, Reese ML, Bailey FP, Eyers PA, et al. A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties. Biochem J. 2014;457:323–34.

    Article  CAS  Google Scholar 

  13. Mendrola JM, Shi F, Park JH, Lemmon MA. Receptor tyrosine kinases with intracellular pseudokinase domains. Biochem Soc Trans. 2013;41:1029–36.

    Article  CAS  Google Scholar 

  14. Choi MY, Widhopf GF, Ghia EM, Kidwell RL, Hasan MK, Yu J, et al. Phase I trial: Cirmtuzumab inhibits ROR1 signaling and stemness signatures in patients with chronic lymphocytic leukemia. Cell Stem Cell. 2018;22:951–.e3.

    Article  CAS  Google Scholar 

  15. Berger C, Sommermeyer D, Hudecek M, Berger M, Balakrishnan A, Paszkiewicz PJ, et al. Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol Res. 2015;3:206–16.

    Article  CAS  Google Scholar 

  16. Eldfors S, Kuusanmäki H, Kontro M, Majumder MM, Parsons A, Edgren H, et al. Idelalisib sensitivity and mechanisms of disease progression in relapsed TCF3-PBX1 acute lymphoblastic leukemia. Leukemia. 2017;31:51–7.

    Article  CAS  Google Scholar 

  17. Karvonen H, Chiron D, Niininen W, Ek S, Jerkeman M, Moradi E, et al. Crosstalk between ROR1 and BCR pathways defines novel treatment strategies in mantle cell lymphoma. Blood Adv. 2017;1:2257–68.

    Article  CAS  Google Scholar 

  18. Yu J, Chen L, Cui B, Wu C, Choi MY, Chen Y, et al. Cirmtuzumab inhibits Wnt5a-induced Rac1 activation in chronic lymphocytic leukemia treated with ibrutinib. Leukemia. 2017;31:1333–9.

    Article  CAS  Google Scholar 

  19. Yu J, Chen L, Cui B, Widhopf GF, Shen Z, Wu R, et al. Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation. J Clin Invest. 2016;126:585–98.

    Article  Google Scholar 

  20. Janovska P, Poppova L, Plevova K, Plesingerova H, Behal M, Kaucka M, et al. Autocrine signaling by Wnt-5a deregulates chemotaxis of leukemic cells and predicts clinical outcome in chronic lymphocytic leukemia. Clin Cancer Res. 2016;22:459–69.

    Article  CAS  Google Scholar 

  21. Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, et al. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 2010;24:2517–30.

    Article  CAS  Google Scholar 

  22. Sun Y, Zhu D, Chen F, Qian M, Wei H, Chen W, et al. SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene. 2016;35:4321–34.

    Article  CAS  Google Scholar 

  23. Bengoa-Vergniory N, Gorroño-Etxebarria I, López-Sánchez I, Marra M, Di Chiaro P, Kypta R. Identification of noncanonical Wnt receptors required for Wnt-3a-induced early differentiation of human neural stem cells. Mol Neurobiol. 2017;54:6213–24.

    Article  CAS  Google Scholar 

  24. Hojjat-Farsangi M, Daneshmanesh AH, Khan AS, Shetye J, Mozaffari F, Kharaziha P, et al. First-in-class oral small molecule inhibitor of the tyrosine kinase ROR1 (KAN0439834) induced significant apoptosis of chronic lymphocytic leukemia cells. Leukemia. 2018. https://doi.org/10.1038/s41375-018-0113-1.

  25. Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM, et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2004;101:3118–23.

    Article  CAS  Google Scholar 

  26. Nygren MK, Døsen-Dahl G, Stubberud H, Wälchli S, Munthe E, Rian E. beta-catenin is involved in N-cadherin-dependent adhesion, but not in canonical Wnt signaling in E2A-PBX1-positive B acute lymphoblastic leukemia cells. Exp Hematol. 2009;37:225–33.

    Article  CAS  Google Scholar 

  27. Chen Y, Chen L, Yu J, Zhang L, Rassenti LZ, Kipps TJ. Wnt5a Induces Interleukin-6 via a ROR1-dependent pathway in chronic lymphocytic leukemia, leading to leukemia-cell activation of STAT3. Blood. 2017;130:4282–82.

    Article  Google Scholar 

  28. Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci USA. 2007;104:15436–41.

    Article  CAS  Google Scholar 

  29. Schreck C, Bock F, Grziwok S, Oostendorp RAJ, Istvánffy R. Regulation of hematopoiesis by activators and inhibitors of Wnt signaling from the niche. Ann N Y Acad Sci. 2014;1310:32–43.

    Article  CAS  Google Scholar 

  30. Dave H, Anver MR, Butcher DO, Brown P, Khan J, Wayne AS, et al. Restricted cell surface expression of receptor tyrosine kinase ROR1 in pediatric B-lineage acute lymphoblastic leukemia suggests targetability with therapeutic monoclonal antibodies. PLoS ONE. 2012;7:e52655.

    Article  CAS  Google Scholar 

  31. Mihalyova J, Jelinek T, Growkova K, Hrdinka M, Simicek M, Hajek R. Venetoclax: A new wave in hematooncology. Exp Hematol. 2018;61:10–25.

    Article  CAS  Google Scholar 

  32. Daneshmanesh AH, Hojjat-Farsangi M, Khan AS, Jeddi-Tehrani M, Akhondi MM, Bayat AA, et al. Monoclonal antibodies against ROR1 induce apoptosis of chronic lymphocytic leukemia (CLL) cells. Leukemia. 2012;26:1348–55.

    Article  CAS  Google Scholar 

  33. Karjalainen R, Pemovska T, Popa M, Liu M, Javarappa KK, Majumder MM, et al. JAK1/2 and BCL2 inhibitors synergize to counteract bone marrow stromal cell–induced protection of AML. Blood. 2017;130:789–802.

    Article  CAS  Google Scholar 

  34. Casagrande G, te Kronnie G, Basso G. The effects of siRNA-mediated inhibition of E2A-PBX1 on EB-1 and Wnt16b expression in the 697 pre-B leukemia cell line. Haematologica. 2006;91:765–71.

    CAS  PubMed  Google Scholar 

  35. DeBruine ZJ, Xu HE, Melcher K. Assembly and architecture of the Wnt/β-catenin signalosome at the membrane. Br J Pharmacol. 2017;174:4564–74.

    Article  CAS  Google Scholar 

  36. Teh M-T, Blaydon D, Ghali LR, Briggs V, Edmunds S, Pantazi E, et al. Role for WNT16B in human epidermal keratinocyte proliferation and differentiation. J Cell Sci. 2007;120:330–9.

    Article  CAS  Google Scholar 

  37. Li P, Harris D, Liu Z, Liu J, Keating M, Estrov Z. Stat3 activates the receptor tyrosine kinase like orphan receptor-1 gene in chronic lymphocytic leukemia cells. PLoS ONE. 2010;5:e11859.

    Article  Google Scholar 

  38. Katoh M, Katoh M. STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer (Review). Int J Mol Med. 2007;19:273–8.

    CAS  PubMed  Google Scholar 

  39. Asem MS, Buechler S, Wates RB, Miller DL, Stack MS. Wnt5a Signaling in Cancer. Cancers. 2016;8:79.

    Article  Google Scholar 

  40. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374:311–22.

    Article  CAS  Google Scholar 

  41. Wilson WH, O’Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11:1149–59.

    Article  CAS  Google Scholar 

  42. Rassenti LZ, Balatti V, Ghia EM, Palamarchuk A, Tomasello L, Fadda P, et al. MicroRNA dysregulation to identify therapeutic target combinations for chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2017;114:10731–6.

    Article  CAS  Google Scholar 

  43. Wee S, Wiederschain D, Maira S-M, Loo A, Miller C, deBeaumont R, et al. PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci USA. 2008;105:13057–62.

    Article  CAS  Google Scholar 

  44. Wiederschain D, Wee S, Chen L, Loo A, Yang G, Huang A, et al. Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle. 2009;8:498–504.

    Article  CAS  Google Scholar 

  45. Pemovska T, Kontro M, Yadav B, Edgren H, Eldfors S, Szwajda A, et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 2013;3:1416–29.

    Article  CAS  Google Scholar 

  46. Yadav B, Pemovska T, Szwajda A, Kulesskiy E, Kontro M, Karjalainen R, et al. Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Sci Rep. 2014;4:5193.

    Article  CAS  Google Scholar 

  47. Kang H, Chen I-M, Wilson CS, Bedrick EJ, Harvey RC, Atlas SR, et al. Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood. 2010;115:1394–405.

    Article  CAS  Google Scholar 

  48. Harvey RC, Mullighan CG, Wang X, Dobbin KK, Davidson GS, Bedrick EJ, et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood. 2010;116:4874–84.

    Article  CAS  Google Scholar 

  49. Oliphant TE. Python for scientific computing. Comput Sci Eng. 2007;9:10–20.

    Article  CAS  Google Scholar 

  50. Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007;9:90–5.

    Article  Google Scholar 

  51. Waskom M, Botvinnik O, O’Kane D, Hobson P, Lukauskas S, David, et al. mwaskom/seaborn: v0.8. 1 (September 2017). Zenodo; 2017 https://doi.org/10.5281/zenodo.883859.

Download references

Acknowledgements

We thank the patients for donating their samples to support our research, the staff of High Throughput Biomedicine Unit at Institute for Molecular Medicine Finland, the Tampere facility of Virus Production and Tampere facility of Flow Cytometry for their service.

Funding

This work was supported by the Doctoral Program in Medicine and Life Sciences at University of Tampere, Academy of Finland, Center of Excellence for Translational Cancer Biology, and the Sigrid Juselius Foundation.

Author contributions

HK, RP, WN, VH designed and performed the experiments. HB performed the bioinformatics analyses. DU wrote the manuscript and supervised the work. CH contributed with clinical samples and critical discussion on the manuscript. AM contributed with DSRT experiments and critical discussions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Ungureanu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karvonen, H., Perttilä, R., Niininen, W. et al. Wnt5a and ROR1 activate non-canonical Wnt signaling via RhoA in TCF3-PBX1 acute lymphoblastic leukemia and highlight new treatment strategies via Bcl-2 co-targeting. Oncogene 38, 3288–3300 (2019). https://doi.org/10.1038/s41388-018-0670-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0670-9

This article is cited by

Search

Quick links