Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cytoskeleton-membrane interaction conserved in fast-spiking neurons controls movement, emotion, and memory

Abstract

The pathogenesis of schizophrenia is believed to involve combined dysfunctions of many proteins including microtubule-associated protein 6 (MAP6) and Kv3.1 voltage-gated K+ (Kv) channel, but their relationship and functions in behavioral regulation are often not known. Here we report that MAP6 stabilizes Kv3.1 channels in parvalbumin-positive (PV+ ) fast-spiking GABAergic interneurons, regulating behavior. MAP6−/− and Kv3.1−/− mice display similar hyperactivity and avoidance reduction. Their proteins colocalize in PV+ interneurons and MAP6 deletion markedly reduces Kv3.1 protein level. We further show that two microtubule-binding modules of MAP6 bind the Kv3.1 tetramerization domain with high affinity, maintaining the channel level in both neuronal soma and axons. MAP6 knockdown by AAV-shRNA in the amygdala or the hippocampus reduces avoidance or causes hyperactivity and recognition memory deficit, respectively, through elevating projection neuron activity. Finally, knocking down Kv3.1 or disrupting the MAP6-Kv3.1 binding in these brain regions causes avoidance reduction and hyperactivity, consistent with the effects of MAP6 knockdown. Thus, disrupting this conserved cytoskeleton-membrane interaction in fast-spiking neurons causes different degrees of functional vulnerability in various neural circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Behavioral alterations in MAP6−/− and Kv3.1−/− mice.
Fig. 2: MAP6 deletion markedly reduces Kv3.1b channel level in PV+ GABAergic interneurons.
Fig. 3: MAP6 directly binds Kv3.1 channel N-terminus.
Fig. 4: Two MAP6 Mn modules bind both monomers and tetramers of Kv3.1 T1 domain.
Fig. 5: MAP6 binding regulates the protein levels of Kv3.1b channels in the soma and axonal terminals of primary cultured neurons.
Fig. 6: AAV-mediated knockdown of MAP6 in the amygdala reduced risk avoidance in mice and Kv3.1b channel level in infected neurons.
Fig. 7: Deleting MAP6 in the hippocampus induced hyperactivity and memory deficits in mice, and increased the activity of hippocampal CA3 pyramidal neurons.
Fig. 8: Kv3.1 knockdown in the amygdala or hippocampus reduced risk avoidance and induced hyperactivity.

Similar content being viewed by others

References

  1. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. 2022;604:509–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Google Scholar 

  4. Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, Landén M, et al. Increased burden of ultra-rare protein-altering variants among 4877 individuals with schizophrenia. Nat Neurosci. 2016;19:1433–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, et al. Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2009;259:151–63.

    PubMed  Google Scholar 

  6. Xiao B, Xu H, Ye H, Hu Q, Chen Y, Qiu W. De novo 11q13.4q14.3 tetrasomy with uniparental isodisomy for 11q14.3qter. Am J Med Genet A. 2015;167A:2327–33.

    PubMed  Google Scholar 

  7. Shimizu H, Iwayama Y, Yamada K, Toyota T, Minabe Y, Nakamura K, et al. Genetic and expression analyses of the STOP (MAP6) gene in schizophrenia. Schizophr Res. 2006;84:244–52.

    PubMed  Google Scholar 

  8. Wei H, Sun S, Li Y, Yu S. Reduced plasma levels of microtubule-associated STOP/MAP6 protein in autistic patients. Psychiatry Res. 2016;245:116–8.

    PubMed  CAS  Google Scholar 

  9. Chen CP, Lin SP, Chern SR, Wu PS, Chen SW, Wu FT, et al. Tetrasomy of 11q13.4-q14.3 due to an intrachromosomal triplication associated with paternal uniparental isodisomy for 11q14.3-qter, intrauterine growth restriction, developmental delay, corpus callosum dysgenesis, microcephaly, congenital heart defects and facial dysmorphism. Taiwan J Obstet Gynecol. 2021;60:169–72.

    PubMed  Google Scholar 

  10. Yanagi M, Joho RH, Southcott SA, Shukla AA, Ghose S, Tamminga CA. Kv3.1-containing K(+) channels are reduced in untreated schizophrenia and normalized with antipsychotic drugs. Mol Psychiatry. 2014;19:573–9.

    PubMed  CAS  Google Scholar 

  11. Angelescu I, Kaar SJ, Marques R, Borgan T, Veronesse F, Sharman A, et al. The effect of AUT00206, a Kv3 potassium channel modulator, on dopamine synthesis capacity and the reliability of [(18)F]-FDOPA imaging in schizophrenia. J Psychopharmacol. 2022;36:1061–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Bosc C, Cronk JD, Pirollet F, Watterson DM, Haiech J, Job D, et al. Cloning, expression, and properties of the microtubule-stabilizing protein STOP. Proc Natl Acad Sci USA. 1996;93:2125–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Job D, Rauch CT, Margolis RL. High concentrations of STOP protein induce a microtubule super-stable state. Biochem Biophys Res Commun. 1987;148:429–34.

    PubMed  CAS  Google Scholar 

  14. Pirollet F, Rauch CT, Job D, Margolis RL. Monoclonal antibody to microtubule-associated STOP protein: affinity purification of neuronal STOP activity and comparison of antigen with activity in neuronal and nonneuronal cell extracts. Biochemistry. 1989;28:835–42.

    PubMed  CAS  Google Scholar 

  15. Cuveillier C, Boulan B, Ravanello C, Denarier E, Deloulme JC, Gory-Fauré S, et al. Beyond Neuronal Microtubule Stabilization: MAP6 and CRMPS, Two Converging Stories. Front Mol Neurosci. 2021;14:665693.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Lefevre J, Savarin P, Gans P, Hamon L, Clément MJ, David MO, et al. Structural basis for the association of MAP6 protein with microtubules and its regulation by calmodulin. J Biol Chem. 2013;288:24910–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Bosc C, Frank R, Denarier E, Ronjat M, Schweitzer A, Wehland J, et al. Identification of novel bifunctional calmodulin-binding and microtubule-stabilizing motifs in STOP proteins. J Biol Chem. 2001;276:30904–13.

    PubMed  CAS  Google Scholar 

  18. Peris L, Bisbal M, Martinez-Hernandez J, Saoudi Y, Jonckheere J, Rolland M, et al. A key function for microtubule-associated-protein 6 in activity-dependent stabilisation of actin filaments in dendritic spines. Nat Commun. 2018;9:3775.

    PubMed  PubMed Central  Google Scholar 

  19. Andrieux A, Salin PA, Vernet M, Kujala P, Baratier J, Gory-Faure S. et al. The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev. 2002;16:2350–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Fournet V, Schweitzer A, Chevarin C, Deloulme JC, Hamon M, Giros B, et al. The deletion of STOP/MAP6 protein in mice triggers highly altered mood and impaired cognitive performances. J Neurochem. 2012;121:99–114.

    PubMed  CAS  Google Scholar 

  21. Rudy B, McBain CJ. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci. 2001;24:517–26.

    PubMed  CAS  Google Scholar 

  22. Kaczmarek LK, Zhang Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol Rev. 2017;97:1431–68.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Gu Y, Servello D, Han Z, Lalchandani RR, Ding JB, Huang K, et al. Balanced Activity between Kv3 and Nav Channels Determines Fast-Spiking in Mammalian Central Neurons. iScience. 2018;9:120–37.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Chi G, Liang Q, Sridhar A, Cowgill JB, Sader K, Radjainia M, et al. Cryo-EM structure of the human Kv3.1 channel reveals gating control by the cytoplasmic T1 domain. Nat Commun. 2022;13:4087.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Weiser M, Bueno E, Sekirnjak C, Martone ME, Baker H, Hillman D, et al. The potassium channel subunit KV3.1b is localized to somatic and axonal membranes of specific populations of CNS neurons. J Neurosci. 1995;15:4298–314.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Oliver KL, Franceschetti S, Milligan CJ, Muona M, Mandelstam SA, Canafoglia L, et al. Myoclonus epilepsy and ataxia due to KCNC1 mutation: Analysis of 20 cases and K(+) channel properties. Ann Neurol. 2017;81:677–89.

    PubMed  CAS  Google Scholar 

  27. Cameron JM, Maljevic S, Nair U, Aung YH, Cogné B, Bézieau S, et al. Encephalopathies with KCNC1 variants: genotype-phenotype-functional correlations. Ann Clin Transl Neurol. 2019;6:1263–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, et al. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet. 2015;47:39–46.

    PubMed  CAS  Google Scholar 

  29. Li X, Zheng Y, Li S, Nair U, Sun C, Zhao C, et al. Kv3.1 channelopathy: a novel loss-of-function variant and the mechanistic basis of its clinical phenotypes. Ann Transl Med. 2021;9:1397.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Park J, Koko M, Hedrich UBS, Hermann A, Cremer K, Haberlandt E, et al. KCNC1-related disorders: new de novo variants expand the phenotypic spectrum. Ann Clin Transl Neurol. 2019;6:1319–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Xu M, Cao R, Xiao R, Zhu MX, Gu C. The axon-dendrite targeting of Kv3 (Shaw) channels is determined by a targeting motif that associates with the T1 domain and ankyrin G. J Neurosci. 2007;27:14158–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Xu M, Gu Y, Barry J, Gu C. Kinesin I transports tetramerized Kv3 channels through the axon initial segment via direct binding. J Neurosci. 2010;30:15987–6001.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Fradley RL, O’Meara GF, Newman RJ, Andrieux A, Job D, Reynolds DS. STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating. Behav Brain Res. 2005;163:257–64.

    PubMed  CAS  Google Scholar 

  34. Parekh PK, Sidor MM, Gillman A, Becker-Krail D, Bettelini L, Arban R, et al. Antimanic Efficacy of a Novel Kv3 Potassium Channel Modulator. Neuropsychopharmacology. 2018;43:435–44.

    PubMed  CAS  Google Scholar 

  35. Tortosa E, Adolfs Y, Fukata M, Pasterkamp RJ, Kapitein LC, Hoogenraad CC. Dynamic Palmitoylation Targets MAP6 to the Axon to Promote Microtubule Stabilization during. Neuronal Polarization Neuron. 2017;94:809–25.

    PubMed  CAS  Google Scholar 

  36. McDonald AJ, Mascagni F. Differential expression of Kv3.1b and Kv3.2 potassium channel subunits in interneurons of the basolateral amygdala. Neuroscience. 2006;138:537–47.

    PubMed  CAS  Google Scholar 

  37. Couegnas A, Schweitzer A, Andrieux A, Ghandour MS, Boehm N. Expression pattern of STOP lacZ reporter gene in adult and developing mouse brain. J Neurosci Res. 2007;85:1515–27.

    PubMed  CAS  Google Scholar 

  38. Dotti CG, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons in culture. J Neurosci. 1988;8:1454–68.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Gu Y, Jukkola P, Wang Q, Esparza T, Zhao Y, Brody D, et al. Polarity of varicosity initiation in central neuron mechanosensation. J Cell Biol. 2017;216:2179–99.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Nestler EJ, Barrot M, Self DW. DeltaFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci USA. 2001;98:11042–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Barry J, Gu Y, Jukkola P, O’Neill B, Gu H, Mohler PJ, et al. Ankyrin-G directly binds to Kinesin-1 to transport voltage-gated Na+ channels into axons. Developmental Cell. 2014;28:117–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Gu C, Barry J. Function and mechanism of axonal targeting of voltage-sensitive potassium channels. Prog Neurobiol. 2011;94:115–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Tweedy C, Kindred N, Curry J, Williams C, Taylor JP, Atkinson P, et al. Hippocampal network hyperexcitability in young transgenic mice expressing human mutant alpha-synuclein. Neurobiol Dis. 2021;149:105226.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Maurer AP, Johnson SA, Hernandez AR, Reasor J, Cossio DM, Fertal KE, et al. Age-related changes in lateral Entorhinal and CA3 neuron allocation predict poor performance on object discrimination. Front Syst Neurosci. 2017;11:49.

    PubMed  PubMed Central  Google Scholar 

  45. Reagh ZM, Noche JA, Tustison NJ, Delisle D, Murray EA, Yassa MA. Functional imbalance of anterolateral entorhinal cortex and hippocampal Dentate/CA3 Underlies Age-related object pattern separation deficits. Neuron. 2018;97:1187–98.e1184.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Babaev O, Piletti Chatain C, Krueger-Burg D. Inhibition in the amygdala anxiety circuitry. Exp Mol Med. 2018;50:1–16.

    PubMed  CAS  Google Scholar 

  47. Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, Potter GB, et al. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature. 2012;489:385–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Jukkola P, Gu Y, Lovett-Racke AE, Gu C. Suppression of inflammatory demyelinaton and axon degeneration through inhibiting Kv3 channels. Front Mol Neurosci. 2017;10:344.

    PubMed  PubMed Central  Google Scholar 

  49. Rice J, Weiner JL, Coutellier L, Gu C. Region-specific interneuron demyelination and heightened anxiety induced by adolescent binge alcohol treatment. Acta Neuropathologica Commun. 2019;7:173.

    Google Scholar 

  50. Jukkola P, Guerrero T, Gray V, Gu C. Astrocytes differentially respond to inflammatory autoimmune insults and imbalances of neural activity. Acta Neuropathologica Commun. 2013;1:70.

    Google Scholar 

  51. Sun C, Qi L, Cheng Y, Zhao Y, Gu C. Immediate induction of varicosities by transverse compression but not uniaxial stretch in axon mechanosensation. Acta Neuropathol Commun. 2022;10:7.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Gu C, Zhou W, Puthenveedu MA, Xu M, Jan YN, Jan LY. The microtubule plus-end tracking protein EB1 is required for Kv1 voltage-gated K+ channel axonal targeting. Neuron. 2006;52:803–16.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Howard Gu for technical assistance in stereotaxic injection, David Arnold for technical assistance in rotarod, Laurence Coutellier for consultation in behavioral testing, and OSU Neuroscience Image Core (P30NS104177) for technical assistance in confocal microscopy. This work was supported, in part, by grants from NIH (R01NS093073) to CG. All animal experiments have been conducted in accordance with the NIH Animal Use Guidelines. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Contributions

CG designed and supervised the research; DM, SC, JB, RM, HL, and CG performed experiments and made the figures; TG and TM performed the SPR experiment. CB and AA provided critical reagents and revised the manuscript. DM and CG wrote and revised the manuscript.

Corresponding author

Correspondence to Chen Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Sun, C., Manne, R. et al. A cytoskeleton-membrane interaction conserved in fast-spiking neurons controls movement, emotion, and memory. Mol Psychiatry 28, 3994–4010 (2023). https://doi.org/10.1038/s41380-023-02286-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02286-7

Search

Quick links