Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News
  • Published:

An endogenous opioid alters neuronal plasticity to constrain cognitive flexibility

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Yang R, Tuan RR, Hwang FJ, Bloodgood DW, Kong D, Ding JB. Dichotomous regulation of striatal plasticity by dynorphin. Mol Psychiatry. 2023;28:434–47.

    Article  CAS  PubMed  Google Scholar 

  2. Armbruster DJ, Ueltzhöffer K, Basten U, Fiebach CJ. Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability. J Cogn Neurosci. 2012;24:2385–99.

    Article  PubMed  Google Scholar 

  3. Genet JJ, Siemer M. Flexible control in processing affective and non-affective material predicts individual differences in trait resilience. Cognition Emot. 2011;25:380–8.

    Article  Google Scholar 

  4. Chen Q, Beaty RE, Wei D, Yang J, Sun J, Liu W, et al. Longitudinal alterations of frontoparietal and frontotemporal networks predict future creative cognitive ability. Cereb Cortex. 2018;28:103–15.

    Article  PubMed  Google Scholar 

  5. Costa A, Peppe A, Mazzù I, Longarzo M, Caltagirone C, Carlesimo GA. Dopamine treatment and cognitive functioning in individuals with Parkinson’s disease: the “cognitive flexibility” hypothesis seems to work. Behav Neurol. 2014;2014:260896.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hughes JR. Post-tetanic potentiation. Physiological Rev. 1958;38:91–113.

    Article  CAS  Google Scholar 

  7. Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001;294:1030–8.

    Article  CAS  PubMed  Google Scholar 

  8. Gerfen CR, Engber TM, Mahan LC, Susel ZV, Chase TN, Monsma FJ Jr, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250:1429–32.

    Article  CAS  PubMed  Google Scholar 

  9. Zhai S, Tanimura A, Graves SM, Shen W, Surmeier DJ. Striatal synapses, circuits, and Parkinson’s disease. Curr Opin Neurobiol. 2018;48:9–16.

    Article  CAS  PubMed  Google Scholar 

  10. Lee HJ, Weitz AJ, Bernal-Casas D, Duffy BA, Choy M, Kravitz AV, et al. Activation of direct and indirect pathway medium spiny neurons drives distinct brain-wide responses. Neuron. 2016;91:412–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L. Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci. 1979;76:6666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tejeda HA, Bonci A. Dynorphin/kappa-opioid receptor control of dopamine dynamics: Implications for negative affective states and psychiatric disorders. Brain Res. 2019;1713:91–101.

    Article  CAS  PubMed  Google Scholar 

  13. Atwood BK, Kupferschmidt DA, Lovinger DM. Opioids induce dissociable forms of long- term depression of excitatory inputs to the dorsal striatum. Nat Neurosci. 2014;17:540–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shen W, Flajolet M, Greengard P, Surmeier DJ. Dichotomous dopaminergic control of striatal synaptic plasticity. Science. 2008;321:848–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pfeiffer A, Brantl V, Herz A, Emrich HM. Psychotomimesis mediated by κ opiate receptors. Science. 1986;233:774–6.

    Article  CAS  PubMed  Google Scholar 

  16. Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci. 2012;69:857–96.

    Article  CAS  PubMed  Google Scholar 

  17. Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A. The neural basis of reversal learning: an updated perspective. Neuroscience. 2017;345:12–26.

    Article  CAS  PubMed  Google Scholar 

  18. Tejeda HA, Wu J, Kornspun AR, Pignatelli M, Kashtelyan V, Krashes MJ, et al. Pathway-and cell-specific kappa-opioid receptor modulation of excitation-inhibition balance differentially gates D1 and D2 accumbens neuron activity. Neuron. 2017;93:147–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coleman BC, Manz KM, Grueter BA. Kappa opioid receptor modulation of excitatory drive onto nucleus accumbens fast-spiking interneurons. Neuropsychopharmacology. 2021;46:2340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Land BB, Bruchas MR, Schattauer S, Giardino WJ, Aita M, Messinger D, et al. Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking. Proc Natl Acad Sci. 2009;106:19168–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Knoll AT, Carlezon WA Jr. Dynorphin, stress, and depression. Brain Res. 2010;1314:56–73.

    Article  CAS  PubMed  Google Scholar 

  22. Becker JB, Chartoff E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology. 2019;44:166–83.

    Article  CAS  PubMed  Google Scholar 

  23. Nooyens AC, Wijnhoven HA, Schaap LS, Sialino LD, Kok AA, Visser M, et al. Sex differences in cognitive functioning with aging in the Netherlands. Gerontology. 2022;4:1.

    Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Cali A Calarco for constructive feedback. This work was supported by NIH R01DA038613, R01DA047843, and R01MH106500 MKL and the University of Maryland School of Medicine Substance Use in Pregnancy Center.

Author information

Authors and Affiliations

Authors

Contributions

JO wrote the commentary’s first draft with input and revisions from MKL. JO and MKL reviewed and approved the final version.

Corresponding author

Correspondence to Mary Kay Lobo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olusakin, J., Lobo, M.K. An endogenous opioid alters neuronal plasticity to constrain cognitive flexibility. Mol Psychiatry 28, 3146–3148 (2023). https://doi.org/10.1038/s41380-023-02204-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02204-x

Search

Quick links