Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression

Abstract

The intricate processes of microbiota-gut-brain communication in modulating human cognition and emotion, especially in the context of mood disorders, have remained elusive. Here we performed faecal metagenomic, serum metabolomics and neuroimaging studies on a cohort of 109 unmedicated patients with depressed bipolar disorder (BD) patients and 40 healthy controls (HCs) to characterise the microbial-gut-brain axis in BD. Across over 12,000 measured metabolic features, we observed a large discrepancy (73.54%) in the serum metabolome between BD patients and HCs, spotting differentially abundant microbial-derived neuroactive metabolites including multiple B-vitamins, kynurenic acid, gamma-aminobutyric acid and short-chain fatty acids. These metabolites could be linked to the abundance of gut microbiota presented with corresponding biosynthetic potentials, including Akkermansia muciniphila, Citrobacter spp. (Citrobacter freundii and Citrobacter werkmanii), Phascolarctobacterium spp., Yersinia spp. (Yersinia frederiksenii and Yersinia aleksiciae), Enterobacter spp. (Enterobacter cloacae and Enterobacter kobei) and Flavobacterium spp. Based on functional neuroimaging, BD-related neuroactive microbes and metabolites were discovered as potential markers associated with BD-typical features of functional connectivity of brain networks, hinting at aberrant cognitive function, emotion regulation, and interoception. Our study combines gut microbiota and neuroactive metabolites with brain functional connectivity, thereby revealing potential signalling pathways from the microbiota to the gut and the brain, which may have a role in the pathophysiology of BD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Altered metabolites in serum of BD patients compared to healthy controls.
Fig. 2: Gut microbiota species associated with BD compared to controls.
Fig. 3: Relationships between specific gut microbial functions and the concentration of BD-related serum metabolites.
Fig. 4: Alterations in the gut microbial composition in patients with BD contribute to the loss in the biosynthesis of neuroactive metabolites.
Fig. 5: Characteristics of brain functional connectivity in BD patients.
Fig. 6: Gut microbiota and serum metabolome of bipolar disorder correlate with brain functional connectivity.

Similar content being viewed by others

Data availability

Metagenomic and neuroimaging data have been deposited into the CNGB Sequence Archive (CNSA; https://db.cngb.org/cnsa/) [85] of China National GeneBank DataBase (CNGBdb) [86] with accession number CNP0002003. The datasets generated by this study are available from the corresponding authors upon request.

Code availability

All codes used for data analysis including serum metabolome, gut microbiome and rs-fMRI are available on https://github.com/lizhiming11/BD_project.

References

  1. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–79.

    CAS  PubMed  Google Scholar 

  2. Michaudel C, Sokol H. The gut microbiota at the service of immunometabolism. Cell Metab. 2020;32:514–23.

  3. Wu J, Wang K, Wang X, Pang Y, Jiang C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell. 2020:12, 360–73.

  4. Simpson CA, Diaz-Arteche C, Eliby D, Schwartz OS, Simmons JG, Cowan CS. The gut microbiota in anxiety and depression–A systematic review. Clin Psychol Rev. 2020:83;101943.

  5. Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2020:19;241–55.

  6. Lai J, Jiang J, Zhang P, Xi C, Wu L, Gao X, et al. Gut microbial clues to bipolar disorder: state‐of‐the‐art review of current findings and future directions. Clin Transl Med. 2020;10:e146.

    PubMed  PubMed Central  Google Scholar 

  7. Guest PC, Guest FL, Martins-de Souza D. Making sense of blood-based proteomics and metabolomics in psychiatric research. Int J Neuropsychopharmacol. 2016;19.

  8. Nikolova VL, Hall MR, Hall LJ, Cleare AJ, Stone JM, Young AH. perturbations in gut microbiota composition in psychiatric disorders: a review and meta-analysis. JAMA Psychiatry. 2021;78:1343–54.

    PubMed  Google Scholar 

  9. McGuinness A, Davis J, Dawson S, Loughman A, Collier F, O’Hely M, et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry. 2022:1–16.

  10. Sublette ME, Cheung S, Lieberman E, Hu S, Mann JJ, Uhlemann AC, et al. Bipolar disorder and the gut microbiome: a systematic review. Bipolar Disord. 2021:23;544–64.

  11. Huang T-T, Lai J-B, Du Y-L, Xu Y, Ruan L-M, Hu S-H. Current understanding of gut microbiota in mood disorders: an update of human studies. Front Genet. 2019;10:98.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rong H, Xie X-h, Zhao J, Lai W-t, Wang M-b, Xu D, et al. Similarly in depression, nuances of gut microbiota: evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. J Psychiatr Res. 2019;113:90–9.

    PubMed  Google Scholar 

  13. Bartoli F, Misiak B, Callovini T, Cavaleri D, Cioni RM, Crocamo C, et al. The kynurenine pathway in bipolar disorder: a meta-analysis on the peripheral blood levels of tryptophan and related metabolites. Mol Psychiatry. 2021;26:3419–29.

    CAS  PubMed  Google Scholar 

  14. Lai W-t, Deng W-f, Xu S-x, Zhao J, Xu D, Liu Y-h, et al. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychological Med. 2021;51:90–101.

    Google Scholar 

  15. Fakhoury M. Revisiting the serotonin hypothesis: implications for major depressive disorders. Mol Neurobiol. 2016;53:2778–86.

    CAS  PubMed  Google Scholar 

  16. Yoshimi N, Futamura T, Kakumoto K, Salehi AM, Sellgren CM, Holmén-Larsson J, et al. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder. BBA Clin. 2016;5:151–8.

    PubMed  PubMed Central  Google Scholar 

  17. Burghardt KJ, Evans SJ, Wiese KM, Ellingrod VL. An untargeted metabolomics analysis of antipsychotic use in bipolar disorder. Clin Transl Sci. 2015;8:432–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sussulini A, Prando A, Maretto DA, Poppi RJ, Tasic L, Banzato CEM, et al. Metabolic profiling of human blood serum from treated patients with bipolar disorder employing 1H NMR spectroscopy and chemometrics. Anal Chem. 2009;81:9755–63.

    CAS  PubMed  Google Scholar 

  19. Yang J, Yan B, Zhao B, Fan Y, He X, Yang L, et al. Assessing the causal effects of human serum metabolites on 5 major psychiatric disorders. Schizophrenia Bull. 2020;46:804–13.

    Google Scholar 

  20. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Müller M. Differentiating moderate and severe depression using the Montgomery–Åsberg depression rating scale (MADRS). J Affect Disord. 2003;77:255–60.

    PubMed  Google Scholar 

  22. Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol. 1959:32;50–5.

  23. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–35.

    CAS  PubMed  Google Scholar 

  24. Feng Q, Li Y, Yang Y, Feng J. Urine metabolomics analysis in patients with normoalbuminuric diabetic kidney disease. Front Physiol. 2020;11:578799.

    PubMed  PubMed Central  Google Scholar 

  25. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:W486–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity. 2012;2:125–41.

    PubMed  Google Scholar 

  27. Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. Statistical parametric mapping: the analysis of functional brain images. Burlington: Elsevier; 2011.

  28. Whitfield-Gabrieli S, Nieto-Castanon A, Ghosh S. Artifact detection tools (ART) 2011;7:11.

    Google Scholar 

  29. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage. 2007;37:90–101.

    PubMed  Google Scholar 

  30. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    PubMed  Google Scholar 

  31. Nieto-Castanon A. Handbook of functional connectivity magnetic resonance imaging methods in CONN. Boston: Hilbert Press; 2020.

  32. Jafri MJ, Pearlson GD, Stevens M, Calhoun VDJN. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage. 2008;39:1666–81.

    PubMed  Google Scholar 

  33. Yang J, Zheng P, Li Y, Wu J, Tan X, Zhou J, et al. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Sci Adv. 2020;6:eaba8555.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Z, Xia J, Jiang L, Tan Y, An Y, Zhu X, et al. Characterization of the human skin resistome and identification of two microbiota cutotypes. Microbiome. 2021;9:1–18.

    CAS  Google Scholar 

  35. Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25:1966–67.

    CAS  PubMed  Google Scholar 

  36. Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol. 2021;39:105–14.

    CAS  PubMed  Google Scholar 

  37. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.

    PubMed  PubMed Central  Google Scholar 

  38. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.

    PubMed  Google Scholar 

  39. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Package ‘vegan’. Community Ecol Package. 2013;2:1–295.

    Google Scholar 

  40. Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20.

    Google Scholar 

  41. McArdle BH, Anderson MJJE. Fitting multivariate models to community data: a comment on distance‐based redundancy analysis. Ecology. 2001;82:290–297.

    Google Scholar 

  42. Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat Commun. 2015;6:1–13.

    Google Scholar 

  43. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.

    CAS  PubMed  Google Scholar 

  44. Benjamini Y, YJJotRsssB Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57:289–300.

    Google Scholar 

  45. Wang X, Yang S, Li S, Zhao L, Hao Y, Qin J, et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut. 2020;69:2131–42.

    CAS  PubMed  Google Scholar 

  46. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Google Scholar 

  47. Pu J, Liu Y, Zhang H, Tian L, Gui S, Yu Y, et al. An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder. Mol Psychiatry. 2020:26;4265–76.

  48. Lovelace MD, Varney B, Sundaram G, Lennon MJ, Lim CK, Jacobs K, et al. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology. 2017;112:373–88.

    CAS  PubMed  Google Scholar 

  49. Marx W, McGuinness AJ, Rocks T, Ruusunen A, Cleminson J, Walker AJ, et al. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies. Molecular Psychiatry. 2020:26;4158–78.

  50. Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357:eaaf9794.

  51. Mora JR, Iwata M, Von, Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008;8:685–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gevi F, Zolla L, Gabriele S, Persico AM. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol Autism. 2016;7:1–11.

    Google Scholar 

  53. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009;106:3698–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu F, Ju Y, Wang W, Wang Q, Guo R, Ma Q, et al. Metagenome-wide association of gut microbiome features for schizophrenia. Nat Commun. 2020;11:1–10.

    Google Scholar 

  55. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23:859–68.

    CAS  PubMed  Google Scholar 

  56. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.

    CAS  PubMed  Google Scholar 

  57. Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C, et al. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol. 2017;7:381.

    PubMed  PubMed Central  Google Scholar 

  58. Evans SJ, Bassis CM, Hein R, Assari S, Flowers SA, Kelly MB, et al. The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res. 2017;87:23–9.

    PubMed  Google Scholar 

  59. Osadchiy V, Martin CR, Mayer EA. The gut–brain axis and the microbiome: mechanisms and clinical implications. Clin Gastroenterol Hepatol. 2019;17:322–32.

    CAS  PubMed  Google Scholar 

  60. Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. 2019;4:396–403.

    CAS  PubMed  Google Scholar 

  61. Tran SM-S, Mohajeri MH. The role of gut bacterial metabolites in brain development, aging and disease. Nutrients. 2021;13:732.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Perry A, Roberts G, Mitchell PB, Breakspear M. Connectomics of bipolar disorder: a critical review, and evidence for dynamic instabilities within interoceptive networks. Mol Psychiatry. 2019;24:1296–318.

    PubMed  Google Scholar 

  63. Altinay MI, Hulvershorn LA, Karne H, Beall EB, Anand A. Differential resting-state functional connectivity of striatal subregions in bipolar depression and hypomania. Brain Connectivity. 2016;6:255–65.

    PubMed  PubMed Central  Google Scholar 

  64. Stoddard J, Gotts S, Brotman M, Lever S, Hsu D, Zarate C Jr, et al. Aberrant intrinsic functional connectivity within and between corticostriatal and temporal–parietal networks in adults and youth with bipolar disorder. Psychological Med. 2016;46:1509.

    CAS  Google Scholar 

  65. Skåtun KC, Kaufmann T, Brandt CL, Doan NT, Alnæs D, Tønnesen S, et al. Thalamo-cortical functional connectivity in schizophrenia and bipolar disorder. Brain Imaging Behav. 2018;12:640–52.

    PubMed  Google Scholar 

  66. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461–78.

    PubMed  Google Scholar 

  67. Liu L, Liu Z, Li Y, Sun C. Integration of metabolomics and proteomics to highlight altered neural development related pathways in the adult offspring after maternal folic acid supplement. Clin Nutr. 2021;40:476–87.

    CAS  PubMed  Google Scholar 

  68. Gao L, Liu X, Yu L, Wu J, Xu M, Liu Y. Folic acid exerts antidepressant effects by upregulating brain-derived neurotrophic factor and glutamate receptor 1 expression in brain. Neuroreport. 2017;28:1078–84.

    CAS  PubMed  Google Scholar 

  69. Enderami A, Zarghami M, Darvishi-Khezri H. The effects and potential mechanisms of folic acid on cognitive function: a comprehensive review. Neurological Sci. 2018;39:1667–75.

    Google Scholar 

  70. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4:623–32.

    CAS  PubMed  Google Scholar 

  71. Kennedy DO. B vitamins and the brain: mechanisms, dose and efficacy—a review. Nutrients. 2016;8:68.

    PubMed  PubMed Central  Google Scholar 

  72. Agirman G, Hsiao EY. SnapShot: the microbiota-gut-brain axis. Cell. 2021;184:2524.

    CAS  PubMed  Google Scholar 

  73. Goldstein BI, Young LT. Toward clinically applicable biomarkers in bipolar disorder: focus on BDNF, inflammatory markers, and endothelial function. Curr Psychiatry Rep. 2013;15:425.

    PubMed  PubMed Central  Google Scholar 

  74. de Sousa RT, Machado-Vieira R, Zarate CA Jr, Manji HK. Targeting mitochondrially mediated plasticity to develop improved therapeutics for bipolar disorder. Expert Opin Therapeutic Targets. 2014;18:1131–47.

    Google Scholar 

  75. Das P, Babaei P, Nielsen J. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics. 2019;20:1–11.

    CAS  Google Scholar 

  76. Brady RO Jr, McCarthy JM, Prescot AP, Jensen JE, Cooper AJ, Cohen BM, et al. Brain gamma‐aminobutyric acid (GABA) abnormalities in bipolar disorder. Bipolar Disord. 2013;15:434–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Marx CE, Stevens RD, Shampine LJ, Uzunova V, Trost WT, Butterfield MI, et al. Neuroactive steroids are altered in schizophrenia and bipolar disorder: relevance to pathophysiology and therapeutics. Neuropsychopharmacology. 2006;31:1249–63.

    CAS  PubMed  Google Scholar 

  78. Zheng P, Yang J, Li Y, Wu J, Liang W, Yin B, et al. Gut microbial signatures can discriminate unipolar from bipolar depression. Adv Sci. 2020;7:1902862.

    CAS  Google Scholar 

  79. Rhee SJ, Kim H, Lee Y, Lee HJ, Park CHK, Yang J, et al. Comparison of serum microbiome composition in bipolar and major depressive disorders. J Psychiatr Res. 2020;123:31–8.

    PubMed  Google Scholar 

  80. McIntyre RS, Subramaniapillai M, Shekotikhina M, Carmona NE, Lee Y, Mansur RB, et al. Characterizing the gut microbiota in adults with bipolar disorder: a pilot study. Nutr Neurosci. 2021:24;173–80.

  81. Wang DD, Nguyen LH, Li Y, Yan Y, Ma W, Rinott E, et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat Med. 2021;27:333–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv. 2019;5:eaau8317.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu F, Guo R, Wang W, Ju Y, Wang Q, Ma Q, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol Psychiatry. 2020;25:2905–18.

    CAS  PubMed  Google Scholar 

  84. Cryan JF, O’Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019:99;1877–2013.

  85. Guo X, Chen F, Gao F, Li L, Liu K, You L, et al. CNSA: a data repository for archiving omics data. Database. 2020;2020:baaa055.

  86. Chen FZ, You LJ, Yang F, Wang LN, Guo XQ, Gao F, et al. CNGBdb: china national genebank database. Yi Chuan. 2020;42:799–809.

    PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (Grant numbers: 81971271 and 81971253), the Zhejiang Provincial Key Research and Development Programme (Grant number: 2021C03107), the Leading Talent of Scientific and Technological Innovation - 'Ten Thousand Talents Programme' of Zhejiang Province (Grant number: 2021R52016), the Zhejiang Provincial Natural Science Foundation (Grant number: LQ20H090013), the Programme from the Health and Family Planning Commission of Zhejiang Province (Grant number: 2020KY548) and Zhong yuan Technological Innovation leading Talents (Grant number: 204200510019).

Author information

Authors and Affiliations

Authors

Contributions

S.H., X.S. and J.L. designed the study; Participants were recruited by J.L., P.Z., J.J., H.H., C.X., L.W., X.G., Y.F., D.Z., Y.C., Y.Z., X.Y., X.L. and L.P.; J.L. and P.Z. coordinated the data processing and availability; Data analysis was performed as follows: serum metabolome analysis (Z.L.), gut microbiota analysis (Z.L.) and neuroimaging analysis (J.D.); C.L., S.L., J.L., D.W., H.Z., M.H., H.Z., Y.S., L.W., Y.L., Z.J., S.L., W.Z. and H.Y. facilitated scientific discussion and gave suggestions; S.H., C.N., X.S. and K.K. supervised these activities; Z.L., J.D. and J.L. wrote the paper, which was revised by S.B., K.K. and S.H.; and all authors read and approved the manuscript.

Corresponding authors

Correspondence to Susanne Brix, Karsten Kristiansen, Xueqin Song, Chao Nie or Shaohua Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Lai, J., Zhang, P. et al. Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Mol Psychiatry 27, 4123–4135 (2022). https://doi.org/10.1038/s41380-022-01569-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01569-9

This article is cited by

Search

Quick links