Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

The 90 plus: longevity and COVID-19 survival

Abstract

The world population is getting older and studies aiming to enhance our comprehension of the underlying mechanisms responsible for health span are of utmost interest for longevity and as a measure for health care. In this review, we summarized previous genetic association studies (GWAS) and next-generation sequencing (NGS) of elderly cohorts. We also present the updated hypothesis for the aging process, together with the factors associated with healthy aging. We discuss the relevance of studying older individuals and build databanks to characterize the presence and resistance against late-onset disorders. The identification of about 2 million novel variants in our cohort of more than 1000 elderly Brazilians illustrates the importance of studying highly admixed populations of non-European ancestry. Finally, the ascertainment of nonagenarians and particularly of centenarians who were recovered from COVID-19 or remained asymptomatic opens new avenues of research aiming to enhance our comprehension of biological mechanisms associated with resistance against pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rizzuto D, Fratiglioni L. Lifestyle factors related to mortality and survival: a mini-review. Gerontology. 2014;60:327–35.

    Article  CAS  PubMed  Google Scholar 

  2. Christensen K, Doblhammer G, Rau R, Vaupel JW. Aging populations: the challenges ahead. Lancet. 2009;374:1196–208.

    Article  PubMed  PubMed Central  Google Scholar 

  3. van den Berg N, Rodríguez-Girondo M, van Dijk IK, Mourits RJ, Mandemakers K, Janssens AAPO, et al. Longevity defined as top 10% survivors and beyond is transmitted as a quantitative genetic trait. Nat Commun. 2019;10:35.

    Article  PubMed  PubMed Central  Google Scholar 

  4. United Nations. World Population Prospects–Population Division–United Nations. [cited 2021 Oct 21]. https://population.un.org/wpp/Graphs/DemographicProfiles/Pyramid/900.

  5. Organization for Economic Cooperation and Development. [cited 2021 Oct 22]. http://data.oecd.org/healthstat/life-expectancy-at-birth.html.

  6. World Data Atlas. Population aged 90+ years by country, 2020- knoema.com. Knoema. [cited 2021 Oct 21]. https://knoema.com//atlas/topics/Demographics/Age/Population-aged-90-years.

  7. World Economic Forum. There are now more than half a million people aged 100 or older around the world. World Economic Forum. [cited 2021 Oct 22]. https://www.weforum.org/agenda/2021/02/living-to-one-hundred-life-expectancy/.

  8. New England School of Medicine. Why Study Centenarians? An Overview | New England Centenarian Study. [cited 2021 Oct 22]. https://www.bumc.bu.edu/centenarian/overview/.

  9. Instituto Brasileiro de Geografia e Estatística (IBGE). Número de idosos cresce 18% em 5 anos e ultrapassa 30 milhões em 2017. [cited 2021 Oct 22]. https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/20980-numero-de-idosos-cresce-18-em-5-anos-e-ultrapassa-30-milhoes-em-2017.

  10. Wachholz PA, José P, Boas FV. Public health and centenarians: necessary adjustments and an uncertain future. Geriatr Gerontol Aging. 2016;10:41–4.

    Google Scholar 

  11. World Health Organization. Decade of Healthy Ageing (2021–2030). [cited 2021 Oct 21]. https://www.who.int/initiatives/decade-of-healthy-ageing.

  12. Passarino G, De Rango F, Montesanto A. Human longevity: genetics or lifestyle? It takes two to tango. Immun Ageing. 2016;13:12.

    Article  PubMed  PubMed Central  Google Scholar 

  13. McGue M, Vaupel JW, Holm N, Harvald B. Longevity is moderately heritable in a sample of Danish twins born 1870–1880. J Gerontol. 1993;48:B237–44.

    Article  CAS  PubMed  Google Scholar 

  14. Herskind AM, McGue M, Holm NV, Sørensen TIA, Harvald B, Vaupel JW. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet. 1996;97:319–23.

    Article  CAS  PubMed  Google Scholar 

  15. Gavrilov LA, Gavrilova NS. Determinants of exceptional human longevity: new ideas and findings. Vienna Yearb Popul Res. 2013;11:295–323.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kemkes-Grottenthaler A. Parental effects on offspring longevity–evidence from 17th to 19th century reproductive histories. Ann Hum Biol. 2004;31:139–58.

    Article  PubMed  Google Scholar 

  17. Sebastiani P, Gurinovich A, Bae H, Andersen SL, Perls TT. Assortative mating by ethnicity in longevous families. Front Genet. 2017;8:186.

    Article  PubMed  PubMed Central  Google Scholar 

  18. van den Berg N, Beekman M, Smith KR, Janssens A, Slagboom PE. Historical demography and longevity genetics: back to the future. Ageing Res Rev. 2017;38:28–39.

    Article  PubMed  Google Scholar 

  19. Kaplanis J, Gordon A, Shor T, Weissbrod O, Geiger D, Wahl M, et al. Quantitative analysis of population-scale family trees with millions of relatives. Science 2018;360:171–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature. 2018;561:45–56.

    Article  CAS  PubMed  Google Scholar 

  21. Prefeitura da cidade de São Paulo. Indicadores Sociodemográficos da População Idosa residente na cidade de Sâo Paulo. 2020:52;47–52.

  22. Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016;2:e1600584.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang W, Qu J, Liu G-H, Belmonte JCI. The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol. 2020;21:137–50.

    Article  CAS  PubMed  Google Scholar 

  24. Härkänen T, Kuulasmaa K, Sares-Jäske L, Jousilahti P, Peltonen M, Borodulin K, et al. Estimating expected life-years and risk factor associations with mortality in Finland: cohort study. BMJ Open. 2020;10:e033741.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cosco TD, Howse K, Brayne C. Healthy ageing, resilience and wellbeing. Epidemiol Psychiatr Sci. 2017;26:579–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rudnicka E, Napierała P, Podfigurna A, Męczekalski B, Smolarczyk R, Grymowicz M. The World Health Organization (WHO) approach to healthy ageing. Maturitas. 2020;139:6–11.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Roberts CE, Phillips LH, Cooper CL, Gray S, Allan JL. Effect of different types of physical activity on activities of daily living in older adults: systematic review and meta-analysis. J Aging Phys Act. 2017;25:653–70.

    Article  PubMed  Google Scholar 

  28. Roberts CK, Barnard RJ. Effects of exercise and diet on chronic disease. J Appl Physiol. 2005;98:3–30.

    Article  PubMed  Google Scholar 

  29. Melzer D, Pilling LC, Ferrucci L. The genetics of human ageing. Nat Rev Genet. 2020;21:88–101.

    Article  CAS  PubMed  Google Scholar 

  30. Bansod S, Ahirwar AK, Sakarde A, Asia P, Gopal N, Alam S, et al. COVID-19 and geriatric population: from pathophysiology to clinical perspectives. Horm Mol Biol Clin Investig. 2021;42:87–98.

    Article  CAS  PubMed  Google Scholar 

  31. Martins Van Jaarsveld G. The effects of COVID-19 among the elderly population: a case for closing the digital divide. Front Psychiatry. 2020;11:1211.

    Article  Google Scholar 

  32. Aburto JM, Schöley J, Kashnitsky I, Zhang L, Rahal C, Missov TI, et al. Quantifying impacts of the COVID-19 pandemic through life-expectancy losses: a population-level study of 29 countries. Int J Epidemiol. 2021 [cited 2021 Oct 17];(dyab207). https://doi.org/10.1093/ije/dyab207.

  33. Woolf SH, Masters RK, Aron LY. Effect of the covid-19 pandemic in 2020 on life expectancy across populations in the USA and other high income countries: simulations of provisional mortality data. BMJ. 2021;373:n1343.

    Article  PubMed  Google Scholar 

  34. Barbosa IR, Galvão MHR, Souza TA de, Gomes SM, Medeiros A de A, Lima KC de. Incidence of and mortality from COVID-19 in the older Brazilian population and its relationship with contextual indicators: an ecological study. Rev Bras Geriatr E Gerontol. 2020 [cited 2021 Oct 17];23. http://www.scielo.br/j/rbgg/a/84SR89v94tDTH3tdppdDjtj/?lang=en.

  35. Pifarré i Arolas H, Acosta E, López-Casasnovas G, Lo A, Nicodemo C, Riffe T, et al. Years of life lost to COVID-19 in 81 countries. Sci Rep. 2021;11:3504.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chan EYS, Cheng D, Martin J. Impact of COVID-19 on excess mortality, life expectancy, and years of life lost in the United States. PLOS One 2021;16:e0256835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Andrasfay T, Goldman N. Association of the COVID-19 pandemic with estimated life expectancy by race/ethnicity in the United States, 2020. JAMA Netw Open. 2021;4:e2114520.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Castro MC, Gurzenda S, Turra CM, Kim S, Andrasfay T, Goldman N. Reduction in life expectancy in Brazil after COVID-19. Nat Med. 2021;27:1629–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kirkwood TB. The origins of human ageing. Philos Trans R Soc B Biol Sci. 1997;352:1765–72.

    Article  CAS  Google Scholar 

  40. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ. The central role of DNA damage in the ageing process. Nature. 2021;592:695–703.

    Article  CAS  PubMed  Google Scholar 

  42. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58:235–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol. 2017;18:175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Casagrande S, Hau M. Telomere attrition: metabolic regulation and signalling function? Biol Lett. 2019;15:20180885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wei J-W, Huang K, Yang C, Kang C-S. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017;37:3–9.

    Article  PubMed  Google Scholar 

  46. Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019;20:421–35.

    Article  CAS  PubMed  Google Scholar 

  47. Taylor RC, Dillin A. Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol. 2011;3:a004440.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Di Micco R, Krizhanovsky V, Baker D, d’Adda, di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22:75–95.

    Article  PubMed  Google Scholar 

  49. Sameri S, Samadi P, Dehghan R, Salem E, Fayazi N, Amini R. Stem cell aging in lifespan and disease: a state-of-the-art review. Curr Stem Cell Res Ther. 2020;15:362–78.

    Article  CAS  PubMed  Google Scholar 

  50. Fuentes E, Fuentes M, Alarcón M, Palomo I. Immune system dysfunction in the elderly. Acad Bras Ciênc 2017;89:285–99.

    Article  CAS  Google Scholar 

  51. Collier DA, Ferreira IATM, Kotagiri P, Datir RP, Lim EY, Touizer E, et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature. 2021;596:417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pataky MW, Young WF, Nair KS. Hormonal and metabolic changes of aging and the influence of lifestyle modifications. Mayo Clin Proc. 2021;96:788–814.

    Article  CAS  PubMed  Google Scholar 

  53. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018 ;14:576–90.

    Article  CAS  PubMed  Google Scholar 

  54. Atkins JL, Pilling LC, Ble A, Dutta A, Harries LW, Murray A, et al. Longer-lived parents and cardiovascular outcomes: 8-year follow-up In 186,000 U.K. Biobank Participants. J Am Coll Cardiol. 2016;68:874–5.

    Article  PubMed  Google Scholar 

  55. Deelen J, Evans DS, Arking DE, Tesi N, Nygaard M, Liu X, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun. 2019;10:3669.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Erikson GA, Bodian DL, Rueda M, Molparia B, Scott ER, Scott-Van Zeeland AA, et al. Whole-genome sequencing of a healthy aging cohort. Cell. 2016;165:1002–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bae H, Gurinovich A, Malovini A, Atzmon G, Andersen SL, Villa F, et al. Effects of FOXO3 polymorphisms on survival to extreme longevity in four centenarian studies. J Gerontol A Biol Sci Med Sci. 2018;73:1439–47.

    Article  CAS  PubMed  Google Scholar 

  58. Wright CF, West B, Tuke M, Jones SE, Patel K, Laver TW, et al. Assessing the pathogenicity, penetrance, and expressivity of putative disease-causing variants in a population setting. Am J Hum Genet. 2019;104:275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dutta A, Henley W, Robine J-M, Langa KM, Wallace RB, Melzer D. Longer lived parents: protective associations with cancer incidence and overall mortality. J Gerontol A Biol Sci Med Sci. 2013;68:1409–18.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Broer L, Buchman AS, Deelen J, Evans DS, Faul JD, Lunetta KL, et al. GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. J Gerontol A Biol Sci Med Sci. 2015;70:110–8.

    Article  CAS  PubMed  Google Scholar 

  61. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:3156.

    Article  Google Scholar 

  62. Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci USA. 2015;112:E4104–4110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, et al. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6:8570.

    Article  CAS  PubMed  Google Scholar 

  64. Hertel J, Friedrich N, Wittfeld K, Pietzner M, Budde K, Van der Auwera S, et al. Measuring biological age via metabonomics: the metabolic age score. J Proteome Res. 2016;15:400–10.

    Article  CAS  PubMed  Google Scholar 

  65. Arboleda-Velasquez JF, Lopera F, O’Hare M, Delgado-Tirado S, Marino C, Chmielewska N, et al. Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat Med. 2019;25:1680–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Holstege H, Beker N, Dijkstra T, Pieterse K, Wemmenhove E, Schouten K, et al. The 100-plus Study of cognitively healthy centenarians: rationale, design and cohort description. Eur J Epidemiol. 2018;33:1229–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Harris TB, Launer LJ, Eiriksdottir G, Kjartansson O, Jonsson PV, Sigurdsson G, et al. Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. Am J Epidemiol. 2007;165:1076–87.

    Article  PubMed  Google Scholar 

  68. Blanché H, Cabanne L, Sahbatou M, Thomas G. A study of French centenarians: are ACE and APOE associated with longevity? C R Acad Sci III. 2001;324:129–35.

    Article  PubMed  Google Scholar 

  69. Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, et al. The cardiovascular health study: design and rationale. Ann Epidemiol. 1991;1:263–76.

    Article  CAS  PubMed  Google Scholar 

  70. Zeng Y, Nie C, Min J, Liu X, Li M, Chen H, et al. Novel loci and pathways significantly associated with longevity. Sci Rep. 2016;6:21243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rasmussen SH, Andersen-Ranberg K, Thinggaard M, Jeune B, Skytthe A, Christiansen L, et al. Cohort Profile: The 1895, 1905, 1910 and 1915 Danish Birth Cohort Studies—secular trends in the health and functioning of the very old. Int J Epidemiol. 2017;46:1746–1746j.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Skytthe A, Valensin S, Jeune B, Cevenini E, Balard F, Beekman M, et al. Design, recruitment, logistics, and data management of the GEHA (Genetics of Healthy Ageing) project. Exp Gerontol. 2011;46:934–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Flachsbart F, Dose J, Gentschew L, Geismann C, Caliebe A, Knecht C, et al. Identification and characterization of two functional variants in the human longevity gene FOXO3. Nat Commun. 2017;8:2063.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sonnega A, Faul JD, Ofstedal MB, Langa KM, Phillips JWR, Weir DR. Cohort profile: the Health and Retirement Study (HRS). Int J Epidemiol. 2014;43:576–85.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sebastiani P, Hadley EC, Province M, Christensen K, Rossi W, Perls TT, et al. A family longevity selection score: ranking sibships by their longevity, size, and availability for study. Am J Epidemiol. 2009;170:1555–62.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schoenmaker M, de Craen AJM, de Meijer PHEM, Beekman M, Blauw GJ, Slagboom PE, et al. Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden Longevity Study. Eur J Hum Genet EJHG. 2006;14:79–84.

    Article  PubMed  Google Scholar 

  77. Huffman DM, Deelen J, Ye K, Bergman A, Slagboom EP, Barzilai N, et al. Distinguishing between longevity and buffered-deleterious genotypes for exceptional human longevity: the case of the MTP gene. J Gerontol A Biol Sci Med Sci. 2012;67:1153–60.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Collerton J, Davies K, Jagger C, Kingston A, Bond J, Eccles MP, et al. Health and disease in 85 year olds: baseline findings from the Newcastle 85+ cohort study. BMJ. 2009;339:b4904.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ikram MA, Brusselle GGO, Murad SD, van Duijn CM, Franco OH, Goedegebure A, et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol. 2017;32:807–50.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lehtimäki T, Ojala P, Rontu R, Goebeler S, Karhunen PJ, Jylhä M, et al. Interleukin-6 modulates plasma cholesterol and C-reactive protein concentrations in nonagenarians. J Am Geriatr Soc. 2005;53:1552–8.

    Article  PubMed  Google Scholar 

  81. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, et al. The third generation cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol. 2007;165:1328–35.

    Article  PubMed  Google Scholar 

  83. Cordell HJ, Bentham J, Topf A, Zelenika D, Heath S, Mamasoula C, et al. Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16. Nat Genet. 2013;45:822–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Naslavsky MS, Yamamoto GL, de Almeida TF, Ezquina SAM, Sunaga DY, Pho N, et al. Exomic variants of an elderly cohort of Brazilians in the ABraOM database. Hum Mutat. 2017;38:751–63.

    Article  CAS  PubMed  Google Scholar 

  85. Naslavsky MS, Scliar MO, Yamamoto GL, Wang JYT, Zverinova S, Karp T, et al. Whole-genome sequencing of 1,171 elderly admixed individuals from the largest Latin American metropolis (São Paulo, Brazil). 2020 [cited 2021 Oct 29] p. 2020.09.15.298026. https://www.biorxiv.or/content/10.1101/2020.09.15.298026v1.

  86. Pinese M, Lacaze P, Rath EM, Stone A, Brion M-J, Ameur A, et al. The Medical Genome Reference Bank contains whole genome and phenotype data of 2570 healthy elderly. Nat Commun. 2020;11:435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Forsell C, Björk BF, Lilius L, Axelman K, Fabre SF, Fratiglioni L, et al. Genetic association to the amyloid plaque associated protein gene COL25A1 in Alzheimer’s disease. Neurobiol Aging. 2010;31:409–15.

    Article  CAS  PubMed  Google Scholar 

  88. Jones G, Pilling LC, Kuo C-L, Kuchel G, Ferrucci L, Melzer D. Sarcopenia and variation in the human leukocyte antigen complex. J Gerontol A Biol Sci Med Sci. 2020;75:301–8.

    Article  CAS  PubMed  Google Scholar 

  89. Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell. 2019;177:26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zatz M, Pavanello R, de CM, Lourenço NCV, Cerqueira A, Lazar M, et al. Assessing pathogenicity for novel mutation/sequence variants: the value of healthy older individuals. Neuromolecular Med. 2012;14:281–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lebrão ML, Duarte YA, de O, Santos JLF, Silva NNda. 10 Years of SABE Study: background, methodology and organization of the study. Rev Bras Epidemiol Braz J Epidemiol. 2019;21:e180002. Suppl 02(Suppl 02)

    Article  Google Scholar 

  92. Naslavsky MS, Scliar MO, Yamamoto GL, Wang JYT, Zverinova S, Karp T, et al. Whole-genome sequencing of 1,171 elderly admixed individuals from the largest Latin American metropolis (São Paulo, Brazil). 2020 [cited 2021 Oct 27] p. 2020.09.15.298026. https://www.biorxiv.org/content/10.1101/2020.09.15.298026v1.

  93. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Amendola LM, Dorschner MO, Robertson PD, Salama JS, Hart R, Shirts BH, et al. Actionable exomic incidental findings in 6503 participants: challenges of variant classification. Genome Res. 2015;25:305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dorschner MO, Amendola LM, Turner EH, Robertson PD, Shirts BH, Gallego CJ, et al. Actionable, pathogenic incidental findings in 1000 participants’ exomes. Am J Hum Genet. 2013;93:631–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020 ;581:434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Elfatih A, Mohammed I, Abdelrahman D, Mifsud B. Frequency and management of medically actionable incidental findings from genome and exome sequencing data: a systematic review. Physiol Genomics. 2021;53:373–84.

    Article  CAS  PubMed  Google Scholar 

  98. Garagnani P, Marquis J, Delledonne M, Pirazzini C, Marasco E, Kwiatkowska KM, et al. Whole-genome sequencing analysis of semi-supercentenarians. eLife. 2021;10:e57849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang S, Gigout S, Molinaro A, Naito-Matsui Y, Hilton S, Foscarin S, et al. Chondroitin 6-sulphate is required for neuroplasticity and memory in ageing. Mol Psychiatry 2021:26;5658–68.

  100. Takata H, Suzuki M, Ishii T, Sekiguchi S, Iri H. Influence of major histocompatibility complex region genes on human longevity among Okinawan-Japanese centenarians and nonagenarians. Lancet Lond Engl. 1987;2:824–6.

    Article  CAS  Google Scholar 

  101. Lăcătușu C-M, Grigorescu E-D, Floria M, Onofriescu A, Mihai B-M. The Mediterranean diet: from an environment-driven food culture to an emerging medical prescription. Int J Environ Res Public Health. 2019;16:942.

    Article  PubMed Central  Google Scholar 

  102. Serra-Majem L, Tomaino L, Dernini S, Berry EM, Lairon D, Ngo de la Cruz J, et al. Updating the Mediterranean diet pyramid towards sustainability: focus on environmental concerns. Int J Environ Res Public Health. 2020;17:8758.

    Article  CAS  PubMed Central  Google Scholar 

  103. Trichopoulou A, Martínez-González MA, Tong TY, Forouhi NG, Khandelwal S, Prabhakaran D, et al. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med 2014;12:112.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tuttolomondo A, Simonetta I, Daidone M, Mogavero A, Ortello A, Pinto A. Metabolic and vascular effect of the Mediterranean diet. Int J Mol Sci. 2019;20:4716.

    Article  CAS  PubMed Central  Google Scholar 

  105. Efeyan A, Comb WC, Sabatini DM. Nutrient sensing mechanisms and pathways. Nature. 2015;517:302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. de Lucia C, Murphy T, Steves CJ, Dobson RJB, Proitsi P, Thuret S. Lifestyle mediates the role of nutrient-sensing pathways in cognitive aging: cellular and epidemiological evidence. Commun Biol 2020;3:1–17.

    Article  Google Scholar 

  107. Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 2019;29:592–610.

    Article  CAS  PubMed  Google Scholar 

  108. Tang BL. Sirt1 and the Mitochondria. Mol Cells. 2016;39:87–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes. 2012;61:1315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. van der Rijt S, Molenaars M, McIntyre RL, Janssens GE, Houtkooper RH. Integrating the hallmarks of aging throughout the tree of life: a focus on mitochondrial dysfunction. Front Cell Dev Biol. 2020;8:1422.

    Google Scholar 

  111. Fang P, Kazmi SA, Jameson KG, Hsiao EY. The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe. 2020;28:201–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kim S, Jazwinski SM. The gut microbiota and healthy aging: a mini-review. Gerontology. 2018;64:513–20.

    Article  CAS  PubMed  Google Scholar 

  113. O’Toole PW, Jeffery IB. Gut microbiota and aging. Science. 2015;350:1214–5.

    Article  PubMed  Google Scholar 

  114. Mangiola F, Nicoletti A, Gasbarrini A, Ponziani FR. Gut microbiota and aging. Eur Rev Med Pharm Sci. 2018;22:7404–13.

    CAS  Google Scholar 

  115. Bárcena C, Valdés-Mas R, Mayoral P, Garabaya C, Durand S, Rodríguez F, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med. 2019;25:1234–42.

    Article  PubMed  Google Scholar 

  116. Boehme M, Guzzetta KE, Bastiaanssen TFS, van de Wouw M, Moloney GM, Gual-Grau A, et al. Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat Aging. 2021;1:666–76.

    Article  Google Scholar 

  117. Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 2021;599:458–64

  118. Choi M, Lee M, Lee M-J, Jung D. Physical activity, quality of life and successful ageing among community-dwelling older adults. Int Nurs Rev. 2017:64;396–404.

    Article  CAS  PubMed  Google Scholar 

  119. Dugan SA, Gabriel KP, Lange-Maia BS, Karvonen-Gutierrez C. Physical activity and physical function: moving and aging. Obstet Gynecol Clin North Am. 2018;45:723–36.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Erickson KI, Hillman C, Stillman CM, Ballard RM, Bloodgood B, Conroy DE, et al. Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. Med Sci Sports Exerc. 2019;51:1242–51.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Faienza MF, Lassandro G, Chiarito M, Valente F, Ciaccia L, Giordano P. How physical activity across the lifespan can reduce the impact of bone ageing: a literature review. Int J Environ Res Public Health. 2020;17:E1862.

    Article  PubMed  Google Scholar 

  122. Horowitz AM, Fan X, Bieri G, Smith LK, Sanchez-Diaz CI, Schroer AB. et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science. 2020;369:167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Praag H, van, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005;25:8680–5.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wu C-W, Chen Y-C, Yu L, Chen H, Jen CJ, Huang A-M, et al. Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J Neurochem. 2007;103:2471–81.

    Article  CAS  PubMed  Google Scholar 

  125. Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: Maintaining the proteome through exercise and caloric restriction. Aging Cell. 2019;18:e12876.

    Article  PubMed  Google Scholar 

  126. Islam MR, Valaris S, Young MF, Haley EB, Luo R, Bond SF, et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat Metab. 2021;3:1058–70.

    Article  CAS  PubMed  Google Scholar 

  127. Lee LO, James P, Zevon ES, Kim ES, Trudel-Fitzgerald C, Spiro A, et al. Optimism is associated with exceptional longevity in 2 epidemiologic cohorts of men and women. Proc Natl Acad Sci. 2019;116:18357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jacobs JM, Maaravi Y, Stessman J. Optimism and longevity beyond age 85. J Gerontol Ser A. 2021;76:1806–13.

    Article  Google Scholar 

  129. Chai S, Li Y, Li X, Tan J, Abdelrahim MEA, Xu X. Effect of age of COVID-19 inpatient on the severity of the disease: a meta-analysis. Int J Clin Pr. 2021;75:e14640.

    CAS  Google Scholar 

  130. Thakur B, Dubey P, Benitez J, Torres JP, Reddy S, Shokar N, et al. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19. Sci Rep. 2021;11:8562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mallapaty S. The coronavirus is most deadly if you are older and male—new data reveal the risks. Nature. 2020;585:16–7.

    Article  CAS  PubMed  Google Scholar 

  133. Centers for Disease Control. Older Adults Risks and Vaccine Information | cdc. 2021 [cited 2021 Oct 23]. https://www.cdc.gov/aging/covid19/covid19-older-adults.html.

  134. Goodman KE, Magder LS, Baghdadi JD, Pineles L, Levine AR, Perencevich EN, et al. Impact of sex and metabolic comorbidities on Coronavirus Disease 2019 (COVID-19) mortality risk across age groups: 66 646 in patients across 613 U.S. Hospitals. Clin Infect Dis. 2020 Dec 18 [cited 2021 Oct 23];(ciaa1787). https://doi.org/10.1093/cid/ciaa1787.

  135. Tavares C, de AM, Avelino-Silva TJ, Benard G, Cardozo FAM, Fernandes JR, et al. ACE2 expression and risk factors for COVID-19 severity in patients with advanced age. Arq Bras Cardiol. 2020;115:701–7.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Amore S, Puppo E, Melara J, Terracciano E, Gentili S, Liotta G. Impact of COVID-19 on older adults and role of long-term care facilities during early stages of epidemic in Italy. Sci Rep. 2021;11:12530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bartleson JM, Radenkovic D, Covarrubias AJ, Furman D, Winer DA, Verdin E. SARS-CoV-2, COVID-19 and the aging immune system. Nat. Aging. 2021;1(Sep):769–82.

    Google Scholar 

  138. Dugué P-A, Hodge AM, Ulvik A, Ueland PM, Midttun Ø, Rinaldi S, et al. Association of markers of inflammation, the kynurenine pathway and B vitamins with age and mortality, and a signature of inflammaging. J Gerontol A Biol Sci Med Sci. 2021;glab163.

  139. Pietrobon AJ, Teixeira FME, Sato MN. I mmunosenescence and Inflammaging: risk factors of severe COVID-19 in older people. Front Immunol. 2020;11:2728.

    Article  Google Scholar 

  140. Fajgenbaum DC, June CH. Cytokine storm. N. Engl J Med. 2020;383:2255–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cron RQ. COVID-19 cytokine storm: targeting the appropriate cytokine. Lancet Rheumatol. 2021;3:e236–7.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Peron JPS, Nakaya H, Susceptibility of the elderly to SARS-CoV-2 infection: ACE-2 overexpression, shedding, and Antibody-dependent Enhancement (ADE). Clinics. 2020 May [cited 2021 Oct 23];75. http://www.scielo.br/j/clin/a/QDXYJBQk6YyLpfGNgBKtxHQ/?lang=en.

  143. Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM, et al. Immunosenescence and its hallmarks: how to oppose aging strategically? a review of potential options for therapeutic intervention. Front Immunol. 2019;10:2247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020;13:151.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ongrádi J, Kövesdi V. Factors that may impact on immunosenescence: an appraisal. Immun Ageing. 2010;7:7.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Luo L, Liang W, Pang J, Xu G, Chen Y, Guo X, et al. Dynamics of TCR repertoire and T cell function in COVID-19 convalescent individuals. Cell Discov. 2021;7:1–17.

    Article  Google Scholar 

  147. Chang C-M, Feng P-H, Wu T-H, Alachkar H, Lee K-Y, Chang W-C. Profiling of T cell repertoire in SARS-CoV-2-infected COVID-19 patients between mild disease and pneumonia. J Clin Immunol. 2021;41:1131–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Castro MV de, Santos KS, Apostolico JS, Fernandes ER, Almeida RR, Levin G, et al. Monozygotic twins discordant for severe clinical recurrence of COVID-19 show drastically distinct T cell responses to SARS-Cov-2. 2021 [cited 2021 Oct 23] p.2021.03.26.21253645. https://www.medrxiv.org/content/10.1101/2021.03.26.21253645v1.

  149. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: a review. Clin Immunol. 2020;215:108427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Parasher A. COVID-19: current understanding of its pathophysiology, clinical presentation and treatment. Postgrad Med J. 2021;97:312–20.

    Article  PubMed  Google Scholar 

  151. Foley MK, Searle SD, Toloue A, Booth R, Falkenham A, Falzarano D, et al. Centenarians and extremely old people living with frailty can elicit durable SARS-CoV-2 spike specific IgG antibodies with virus neutralization functions following virus infection as determined by serological study. EClinicalMedicine. 2021;37:100975.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Hashimoto K, Kouno T, Ikawa T, Hayatsu N, Miyajima Y, Yabukami H, et al. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad Sci. 2019;116:24242–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Guerini FR, Cesari M, Arosio B. Hypothetical COVID-19 protection mechanism: hints from centenarians. Immun Ageing. 2021;18:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Naumova E, Mihaylova A, Ivanova M, Mihailova S. Impact of KIR/HLA ligand combinations on immune responses in malignant melanoma. Cancer Immunol Immunother CII. 2007;56:95–100.

    Article  CAS  PubMed  Google Scholar 

  155. Secolin R, de Araujo TK, Gonsales MC, Rocha CS, Naslavsky M, Marco LD, et al. Genetic variability in COVID-19-related genes in the Brazilian population. Hum Genome Var. 2021;8:1–9.

    Article  Google Scholar 

  156. Castelli EC, de Castro MV, Naslavsky MS, Scliar MO, Silva NSB, Andrade HS, et al. MHC variants associated with symptomatic versus asymptomatic SARS-CoV-2 infection in highly exposed individuals. Front Immunol. 2021;12:3898.

    Article  Google Scholar 

  157. Tavasolian F, Rashidi M, Hatam GR, Jeddi M, Hosseini AZ, Mosawi SH, et al. HLA, immune response, and susceptibility to COVID-19. Front Immunol. 2021;11:3581.

    Article  Google Scholar 

  158. De Pue S, Gillebert C, Dierckx E, Vanderhasselt M-A, De Raedt R, Van, et al. The impact of the COVID-19 pandemic on wellbeing and cognitive functioning of older adults. Sci Rep. 2021;11:4636.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Vahia IV, Jeste DV, Reynolds CF III. Older adults and the mental health effects of COVID-19. JAMA 2020;324:2253–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to all “ninety-plus” volunteers for their participation and to the HUG-CELL technical team for the material collection, process, and data analysis. Special thanks to Prevent Senior Institute for the 90+ volunteer screening process and blood collection in the cohort recovery from COVID-19; to Professor Keity Souza Santos and Professor Edecio Cunha-Neto from Heart Institute “InCor”—University of Sao Paulo for leading and execution of the serology tests with the 90+ recovered from COVID-19; to Professor Yeda Duarte from School of Public Health, University of Sao Paulo, who collaborates with our research group in studies on aging; to Brazilian Senator Mara Gabrilli for financial support. This work was supported by the Sao Paulo Research Foundation (FAPESP/Brazil) [Grant reference numbers 2013/08028-1, 2014/50931-3 and 2020/09702-1], the National Council for Scientific and Technological Development (CNPq) [grant reference number 465355/2014-5], the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)—Finance Code 001 and JBS S.A [Grant reference number 69004]. The funders were not involved in the study design, collection, analysis, interpretation of data, the writing of this review, or the decision to submit it for publication.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript. MZ funding acquisition and writing (original draft, review, and editing). MVRS, MVC, and MSN writing (original draft, review, and editing).

Corresponding author

Correspondence to Mayana Zatz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zatz, M., Silva, M.V.R., de Castro, M.V. et al. The 90 plus: longevity and COVID-19 survival. Mol Psychiatry 27, 1936–1944 (2022). https://doi.org/10.1038/s41380-022-01461-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01461-6

This article is cited by

Search

Quick links