Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amygdala DCX and blood Cdk14 are implicated as cross-species indicators of individual differences in fear, extinction, and resilience to trauma exposure

Abstract

Doublecortin (DCX) has long been implicated in, and employed as a marker for, neurogenesis, yet little is known about its function in non-neurogenic brain regions, including the amygdala. This study sought first to explore, in rodents, whether fear learning and extinction modulate amygdala DCX expression and, second, to assess the utility of peripheral DCX correlates as predictive biomarkers of trauma response in rodents and humans. Pavlovian conditioning was found to alter DCX protein levels in mice 24 h later, resulting in higher DCX expression associated with enhanced learning in paradigms examining both the acquisition and extinction of fear (p < 0.001). This, in turn, is associated with differences in freezing on subsequent fear expression tests, and the same relationship between DCX and fear extinction was replicated in rats (p < 0.001), with higher amygdala DCX levels associated with more rapid extinction of fear. RNAseq of amygdala and blood from mice identified 388 amygdala genes that correlated with DCX (q < 0.001) and which gene ontology analyses revealed were significantly over-represented for neurodevelopmental processes. In blood, DCX-correlated genes included the Wnt signaling molecule Cdk14 which was found to predict freezing during both fear acquisition (p < 0.05) and brief extinction protocols (p < 0.001). High Cdk14 measured in blood immediately after testing was also associated with less freezing during fear expression testing (p < 0.01). Finally, in humans, Cdk14 expression in blood taken shortly after trauma was found to predict resilience in males for up to a year post-trauma (p < 0.0001). These data implicate amygdala DCX in fear learning and suggest that Cdk14 may serve as a predictive biomarker of trauma response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Individual differences in freezing during fear learning are associated with differences in amygdala doublecortin (DCX) expression in mice.
Fig. 2: Individual differences in extinction speed are associated with different levels of amygdala DCX expression after learning in rats.
Fig. 3: Gene ontology analyses of amygdala correlates of DCX as determined by RNA sequencing.
Fig. 4: Blood Cdk14 expression is a predictive marker of fear learning and fear expression in mice.
Fig. 5: Blood Cdk14 expression measured within hours of trauma predicts resilience in a traumatized human population.

Similar content being viewed by others

References

  1. Ayanlaja AA, Xiong Y, Gao Y, Ji G, Tang C, Abdikani Abdullah Z, et al. Distinct features of doublecortin as a marker of neuronal migration and its implications in cancer cell mobility. Front Mol Neurosci. 2017;10:199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Burgess HA, Reiner O. Doublecortin-like kinase is associated with microtubules in neuronal growth cones. Mol Cell Neurosci. 2000;16:529–41.

    Article  CAS  PubMed  Google Scholar 

  3. Friocourt G, Koulakoff A, Chafey P, Boucher D, Fauchereau F, Chelly J, et al. Doublecortin functions at the extremities of growing neuronal processes. Cereb Cortex. 2003;13:620–6.

    Article  PubMed  Google Scholar 

  4. Moores CA, Perderiset M, Kappeler C, Kain S, Drummond D, Perkins SJ, et al. Distinct roles of doublecortin modulating the microtubule cytoskeleton. EMBO J. 2006;25:4448–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koizumi H, Higginbotham H, Poon T, Tanaka T, Brinkman BC, Gleeson JG. Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain. Nat Neurosci. 2006;9:779–86.

    Article  CAS  PubMed  Google Scholar 

  6. Piumatti M, Palazzo O, La Rosa C, Crociara P, Parolisi R, Luzzati F, et al. Non-newly generated, “immature” neurons in the sheep brain are not restricted to cerebral cortex. J Neurosci. 2018;38:826–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sorrells SF, Paredes MF, Velmeshev D, Herranz-Pérez V, Sandoval K, Mayer S, et al. Immature excitatory neurons develop during adolescence in the human amygdala. Nat Commun. 2019;10:2748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Maheu ME, Davoli MA, Turecki G, Mechawar N. Amygdalar expression of proteins associated with neuroplasticity in major depression and suicide. J Psychiatr Res. 2013;47:384–90.

    Article  PubMed  Google Scholar 

  9. Bourgeois F, Messéant J, Kordeli E, Petit JM, Delers P, Bahi-Buisson N, et al. A critical and previously unsuspected role for doublecortin at the neuromuscular junction in mouse and human. Neuromuscul Disord. 2015;25:461–73.

    Article  CAS  PubMed  Google Scholar 

  10. Rajman M, Metge F, Flore R, Khudayberdiev S, Aksoy-Aksel A, Bicker S, et al. A microRNA-129-5p/Rbfox crosstalk coordinates homeostatic downscaling of excitatory synapses. EMBO J. 2017;36:1770–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nacher J, Pham K, Gil-Fernandez V, McEwen BS. Chronic restraint stress and chronic costicosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex. Neuroscience. 2004;126:503–309.

    Article  CAS  PubMed  Google Scholar 

  12. Stein MB, Choi KW, Jain S, Campbell-Sills L, Chen CY, Gelernter J, et al. Genome-wide analyses of psychological resilience in U.S. Army soldiers. Am J Med Genet B Neuropsychiatr Genet. 2019;180:310–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nawabi H, Belin S, Cartoni R, Williams PR, Wang C, Latremolière A, et al. Doublecortin-like kinases promote neuronal survival and induce growth cone reformation via distinct mechanisms. Neuron. 2015;88:704–19.

    Article  CAS  PubMed  Google Scholar 

  14. Tuy FP, Saillour Y, Kappeler C, Chelly J, Francis F. Alternative transcripts of Dclk1 and Dclk2 and their expression in doublecortin knockout mice. Dev Neurosci. 2008;30:171–86.

    Article  PubMed  CAS  Google Scholar 

  15. Senn V, Wolff SB, Herry C, Grenier F, Ehrlich I, Gründemann J, et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron. 2014;81:428–37.

    Article  CAS  PubMed  Google Scholar 

  16. McCullough KM, Morrison FG, Ressler KJ. Bridging the gap: towards a cell-type specific understanding of neural circuits underlying fear behaviors. Neurobiol Learn Mem. 2016;135:27–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. King G, Graham BM, Richardson R. Individual differences in fear relapse. Behav Res Ther. 2018;100:37–43.

    Article  CAS  PubMed  Google Scholar 

  18. Lori A, Maddox SA, Sharma S, Andero R, Ressler KJ, Smith AK. Dynamic patterns of threat-associated gene expression in amygdala and blood. Front Psychiatry. 2019;9:778.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maddox SA, Kilaru V, Shin J, Jovanovic T, Almli LM, Dias BG, et al. Estrogen-dependent association of HDAC4 with fear in female mice and women with PTSD. Mol Psychiatry. 2018;23:658–65.

    Article  CAS  PubMed  Google Scholar 

  20. Maguschak KA, Ressler KJ. Wnt signaling in amygdala-dependent learning and memory. J Neurosci. 2011;31:13057–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maguschak KA, Ressler KJ. Beta-catenin is required for memory consolidation. Nat Neurosci. 2008;11:1319–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krueger F, Segonds-Pichon A, Biggins L, Krueger C, Wingett S, Andrews S. FastQC. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

  23. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:1.

    Article  Google Scholar 

  24. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Untrafast universal RNA-seq aligner. Bioinformatics. 2012;29:15–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Waterston RH, Lindbald-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520–62.

    Article  CAS  PubMed  Google Scholar 

  27. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 2004;32:D493–D496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequences (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745.

    Article  PubMed  CAS  Google Scholar 

  29. Lebow MA, Schroeder M, Tsoory M, Holzman-Karniel D, Mehta D, Ben-Dor S, et al. Glucocorticoid-induced leucine zipper “quantifies” stressors and increases male susceptibility to PTSD. Transl Psychiatry. 2019;9:178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lori A, Schultebraucks K, Galatzer-Levy I, Daskalakis NP, Katrinli S, Smith AK, et al. Transcriptome-wide association study of post-trauma symptom trajectories identified GRIN3B as a potential biomarker for PTSD development. Neuropsychopharmacology. 2021; 46:1811–20.

  31. Wuchty S, Myers AJ, Ramirez-Restrepo M, Huentelman M, Richolt R, Gould F, et al. Integration of peripheral transcriptomics, genomics, and interactomics following trauma identifies causal genes for symptoms of post-traumatic stress and major depression. Mol Psychiatry. 2021;26:3077–92.

  32. Connor KM, Davidson JR. Development of a new resilience scale: the Connor-Davidson Resilience Scale (CD-RISC). Depression Anxiety. 2003;18:76–82.

    Article  PubMed  Google Scholar 

  33. Epp JR, Haack AK, Galea LA. Task difficulty in the Morris water task influences the survival of new neurons in the dentate gyrus. Hippocampus. 2010;20:866–76.

    PubMed  Google Scholar 

  34. Wang Y, Song Y, Qu Z, Ding Y. Task difficulty modulates electrophysiological correlates of perceptual learning. Int J Psychophysiol. 2010;75:234–40.

    Article  PubMed  Google Scholar 

  35. Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci. 2009;10:423–33.

    Article  CAS  PubMed  Google Scholar 

  36. Patel D, Kas MJ, Chattarji S, Buwalda B. Rodent models of social stress and neuronal plasticity: relevance to depressive-like disorders. Behav Brain Res. 2019;369:111900.

    Article  PubMed  Google Scholar 

  37. Harris JA, Andrew BJ. Time, trials, and extinction. J Exp Psychol Anim Learn Cogn. 2017;43:15–29.

    Article  PubMed  Google Scholar 

  38. Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, et al. Neuronal competition and selection during memory formation. Science. 2007;316:457–60.

    Article  CAS  PubMed  Google Scholar 

  39. Yiu AP, Mercaldo V, Yan C, Richards B, Rashid AJ, Hsiang HL, et al. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron. 2014;83:722–35.

    Article  CAS  PubMed  Google Scholar 

  40. Park S, Kramer EE, Mercaldo V, Rashid AJ, Insel N, Frankland PW, et al. Neuronal allocation to a hippocampal engram. Neuropsychopharmacology. 2016;41:2987–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sargin D, Mercaldo V, Yiu AP, Higgs G, Han JH, Frankland PW, et al. CREB regulates spine density of lateral amygdala neurons: implications for memory allocation. Front Behav Neurosci. 2013;7:209.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tsybko AS, Ilchibaeva TV, Popova NK. Role of glial cell line-deried neurotrophic factors in the pathogenesis and treatment of mood disorders. Rev Neurosci. 2017;28:219–33.

    Article  PubMed  Google Scholar 

  43. Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J Affect Disord. 2015;174:432–40.

    Article  CAS  PubMed  Google Scholar 

  44. Li B, Jiang Y, Xu Y, Li Y, Li B. Identification of miRNA-7 as a regulator of brain-derived neurotrophic factor/α-synyclein axis in atrazine-induced Parkinson’s disease by peripheral blood and brain microRNA profiling. Chemosphere. 2019;233:542–8.

    Article  CAS  PubMed  Google Scholar 

  45. Mina E, van Roon-Mom W, Hettne K, van Zwet E, Goeman J, Neri C, et al. Common disease signatures from gene expression analysis in Huntington’s disease human blood and brain. Orphanet J Rare Dis. 2016;11:97.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lu F, Li C, Sun Y, Jia T, Li N, Li H. Upregulation of miR-1825 inhibits the progression of glioblastoma by suppressing CDK14 though Wnt/β-catenin signaling pathway. World J Surg Oncol. 2020;18:147.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ou-Yang J, Huang LH, Sun XX. Cyclin-Dependent Kinase 14 Promotes Cell Proliferation, Migration and Invasion in Ovarian Cancer by Inhibiting Wnt Signaling Pathway. Gynecol Obstet Investig. 2017;82:230–9.

    Article  CAS  Google Scholar 

  48. Davidson G, Niehrs C. Emerging links between CDK cell cycle regulators and Wnt signaling. Trends Cell Biol. 2010;20(Aug):453–60.

    Article  CAS  PubMed  Google Scholar 

  49. Morgan-Smith M, Wu Y, Zhu X, Pringle J, Snider WD. GSK-3 signaling in developing cortical neurons is essential for radial migration and dendritic orientation. Elife 2014;3:e02663.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Piens M, Muller M, Bodson M, Baudouin G, Plumier JC. A short upstream promoter region mediates transcriptional regulation of the mouse doublecortin gene in differentiating neurons. BMC Neurosci. 2010;11:64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Bengoa-Vergniory N, Gorroño-Etxebarria I, López-Sánchez I, Marra M, Di Chiaro P, Kypta R. Identification of Noncanonical Wnt Receptors Required for Wnt-3a-Induced Early Differentiation of Human Neural Stem Cells. Mol Neurobiol. 2017;54:6213–24.

    Article  CAS  PubMed  Google Scholar 

  52. Maheu ME, Ressler KJ. Developmental pathway genes and neural plasticity underlying emotional learning and stress-related disorders. Learn Mem. 2017;24:492–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MEM is supported by a fellowship from the Canadian Institutes of Health Research. Support was also provided by the American Heart Association, AHA Award #15CSA2430001, the Australian Research Council, DP150104835, and the National Institutes of Health: MH108665, MH110441, MH100122, HD088931 and MH115874. Dr KJR has performed scientific consultation for Bioxcel, Bionomics, and Jazz Pharma; served on Scientific Advisory Boards for Janssen, Sage, Acer Therapeutics, Verily, and the Brain Research Foundation, and he has received sponsored research support from Takeda, Alto Neuroscience, and Brainsway. None of these relationships are related to this paper. He receives funding from NIH and the Brain and Behavior Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

Designed research (MEM, KJR, RR), performed research (MEM, SS, GK, SAM, AW, AL, VM), analyzed data (MEM, GK, SS), obtained funding (MEM, RR, KJR), wrote the paper (MEM, GK, RR, KJR).

Corresponding author

Correspondence to K. J. Ressler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheu, M.E., Sharma, S., King, G. et al. Amygdala DCX and blood Cdk14 are implicated as cross-species indicators of individual differences in fear, extinction, and resilience to trauma exposure. Mol Psychiatry 27, 956–966 (2022). https://doi.org/10.1038/s41380-021-01353-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01353-1

Search

Quick links