Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical Research

F13A1 transglutaminase expression in human adipose tissue increases in acquired excess weight and associates with inflammatory status of adipocytes

Subjects

Abstract

Objective

F13A1/FXIII-A transglutaminase has been linked to adipogenesis in cells and to obesity in humans and mice, however, its role and associated molecular pathways in human acquired excess weight have not been explored.

Methods

We examined F13A1 expression and association to human weight gain in weight-discordant monozygotic twins (Heavy-Lean difference (ΔWeight, 16.8 kg ± 7.16 for n = 12). The twin pairs were examined for body composition (by dual-energy X-ray absorptiometry), abdominal body fat distribution (by magnetic resonance imaging), liver fat content (by magnetic resonance spectroscopy), circulating adipocytokines, leptin and adiponectin, as well as serum lipids. Affymetrix full transcriptome mRNA analysis was performed from adipose tissue and adipocyte-enriched fractions from subcutaneous abdominal adipose tissue biopsies. F13A1 differential expression between the heavy and lean co-twins was examined and its correlation transcriptome changes between co-twins were performed.

Results

F13A1 mRNA showed significant increase in adipose tissue (p < 0.0001) and an adipocyte-enriched fraction (p = 0.0012) of the heavier co-twin. F13A1 differential expression in adipose tissue (Heavy-Lean ΔF13A1) showed significant negative correlation with circulating adiponectin (p = 0.0195) and a positive correlation with ΔWeight (p = 0.034), ΔBodyFat (0.044) and ΔAdipocyte size (volume, p = 0.012;) in adipocyte-enriched fraction. A whole transcriptome-wide association study (TWAS) on ΔF13A1 vs weight-correlated ΔTranscriptome identified 182 F13A1-associated genes (r > 0.7, p = 0.05) with functions in several biological pathways including cell stress, inflammatory response, activation of cells/leukocytes, angiogenesis and extracellular matrix remodeling. F13A1 did not associate with liver fat accumulation.

Conclusions

F13A1 levels in adipose tissue increase with acquired excess weight and associate with pro-inflammatory, cell stress and tissue remodeling pathways. This supports its role in expansion and inflammation of adipose tissue in obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: F13A1 expression in adipose tissue and adipocyte-enriched fraction of weight-discordant monozygotic (MZ) twin pairs.
Fig. 2: Significant correlation (r) of differential (Δ Heavy-Lean) F13A1 expression in adipose tissue and adipocyte-enriched fraction to differential (Δ Heavy-Lean) metabolic parameters relevant to energy metabolism in weight-discordant monozygotic (MZ) twin pairs.
Fig. 3: Linear correlation (r2) of differential F13A1 expression (Δ) in an adipocyte-enriched fraction of weight-discordant monozygotic (MZ) twin pairs with selected genes (ΔHeavy-Lean twin) that represent significant, over-represented GOterms listed in Table 2.
Fig. 4: F13A1 expression in weight-discordant monozygotic (MZ) twin pairs with liver fat % (LF%) discordance.

Similar content being viewed by others

References

  1. Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol. 2011;12:722–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.

    Article  CAS  PubMed  Google Scholar 

  3. Datta R, Podolsky MJ, Atabai K. Fat fibrosis: friend or foe? JCI insight. 2018;3:e122289.

  4. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121:2094–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156:20–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heinonen S, Jokinen R, Rissanen A, Pietilainen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obesity Rev. 2020;21:e12958.

    Article  Google Scholar 

  7. Heinonen S, Buzkova J, Muniandy M, Kaksonen R, Ollikainen M, Ismail K, et al. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes. 2015;64:3135–45.

    Article  CAS  PubMed  Google Scholar 

  8. Heinonen S, Muniandy M, Buzkova J, Mardinoglu A, Rodriguez A, Fruhbeck G, et al. Mitochondria-related transcriptional signature is downregulated in adipocytes in obesity: a study of young healthy MZ twins. Diabetologia. 2017;60:169–81.

    Article  CAS  PubMed  Google Scholar 

  9. Naukkarinen J, Surakka I, Pietilainen KH, Rissanen A, Salomaa V, Ripatti S, et al. Use of genome-wide expression data to mine the “Gray Zone” of GWA studies leads to novel candidate obesity genes. PLoS Genet. 2010;6:e1000976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Heinonen S, Saarinen L, Naukkarinen J, Rodriguez A, Fruhbeck G, Hakkarainen A, et al. Adipocyte morphology and implications for metabolic derangements in acquired obesity. Int J Obes. 2014;38:1423–31.

    Article  CAS  Google Scholar 

  11. Muszbek L, Bereczky Z, Bagoly Z, Komaromi I, Katona E. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev. 2011;91:931–72.

    Article  CAS  PubMed  Google Scholar 

  12. Mitchell JL, Mutch NJ. Let’s cross-link: diverse functions of the promiscuous cellular transglutaminase factor XIII-A. J. Thromb Haemost. 2019;17:19–30.

    Article  CAS  PubMed  Google Scholar 

  13. Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GV, et al. Transglutaminase regulation of cell function. Physiol Rev. 2014;94:383–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hsieh L, Nugent D. Factor XIII deficiency. Haemophilia. 2008;14:1190–200.

    Article  CAS  PubMed  Google Scholar 

  15. Mousa A, Cui C, Song A, Myneni VD, Sun H, Li JJ, et al. Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow. Cell Death Differ. 2017;24:844–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mosher DF. Factor XIII and adipocyte biology. Blood. 2014;124:1213–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Myneni VD, Hitomi K, Kaartinen MT. Factor XIII-A transglutaminase acts as a switch between preadipocyte proliferation and differentiation. Blood. 2014;124:1344–53.

    Article  CAS  PubMed  Google Scholar 

  18. Myneni VD, Mousa A, Kaartinen MT. Factor XIII-A transglutaminase deficient mice show signs of metabolically healthy obesity on high fat diet. Sci Rep. 2016;6:35574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pietilainen KH, Naukkarinen J, Rissanen A, Saharinen J, Ellonen P, Keranen H, et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med. 2008;5:e51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kaprio J. Twin studies in Finland 2006. Twin Res Hum Genet. 2006;9:772–7.

    Article  PubMed  Google Scholar 

  21. Graner M, Seppala-Lindroos A, Rissanen A, Hakkarainen A, Lundbom N, Kaprio J, et al. Epicardial fat, cardiac dimensions, and low-grade inflammation in young adult monozygotic twins discordant for obesity. Am J Cardiol. 2012;109:1295–302.

    Article  PubMed  Google Scholar 

  22. Naukkarinen J, Heinonen S, Hakkarainen A, Lundbom J, Vuolteenaho K, Saarinen L, et al. Characterising metabolically healthy obesity in weight-discordant monozygotic twins. Diabetologia. 2014;57:167–76.

    Article  CAS  PubMed  Google Scholar 

  23. Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol. 1996;271:E941–51.

    CAS  PubMed  Google Scholar 

  24. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  CAS  PubMed  Google Scholar 

  25. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat. 2016;10:946–63.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.

    Article  PubMed  PubMed Central  Google Scholar 

  28. R Core Team (2020) R: A language and environment for statistical computing. Austria, Vienna: R Foundation for Statistical Computing; 2011.

  29. Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4:1184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jukarainen S, Heinonen S, Ramo JT, Rinnankoski-Tuikka R, Rappou E, Tummers M, et al. Obesity Is Associated With Low NAD(+)/SIRT Pathway Expression in Adipose Tissue of BMI-Discordant Monozygotic Twins. The. J Clin Endocrinol Metab. 2016;101:275–83.

    Article  CAS  PubMed  Google Scholar 

  31. Kaye SM, Pietilainen KH, Kotronen A, Joutsi-Korhonen L, Kaprio J, Yki-Jarvinen H. et al. Obesity-related derangements of coagulation and fibrinolysis: a study of obesity-discordant monozygotic twin pairs. Obesity. 2012;20:88–94.

    Article  CAS  PubMed  Google Scholar 

  32. Pietilainen KH, Ismail K, Jarvinen E, Heinonen S, Tummers M, Bollepalli S, et al. DNA methylation and gene expression patterns in adipose tissue differ significantly within young adult monozygotic BMI-discordant twin pairs. Int J Obes. 2016;40:654–61.

    Article  CAS  Google Scholar 

  33. Sahebekhtiari N, Saraswat M, Joenväärä S, Jokinen R, Lovric A, Kaye S, et al. Plasma proteomics analysis reveals dysregulation of complement proteins and inflammation in acquired obesity-A study on rare bmi-discordant monozygotic twin pairs. Proteomics Clin Appl. 2019;13:e1800173.

    Article  PubMed  CAS  Google Scholar 

  34. Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13:633–43.

    Article  CAS  PubMed  Google Scholar 

  35. Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol. 2017;37:35–40.

    Article  CAS  PubMed  Google Scholar 

  36. Lee BC, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta. 2014;1842:446–62.

    Article  CAS  PubMed  Google Scholar 

  37. Han CY. Roles of reactive oxygen species on insulin resistance in adipose tissue. Diabetes Metab J. 2016;40:272–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chan PC, Hsiao FC, Chang HM, Wabitsch M, Hsieh PS. Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance. FASEB J. 2016;30:2282–97.

    Article  CAS  PubMed  Google Scholar 

  39. Banhos Danneskiold-Samsøe N, Sonne SB, Larsen JM, Hansen AN, Fjære E, Isidor MS, et al. Overexpression of cyclooxygenase-2 in adipocytes reduces fat accumulation in inguinal white adipose tissue and hepatic steatosis in high-fat fed mice. Sci Rep. 2019;9:8979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr Physiol. 2018;9:1–58.

    PubMed  PubMed Central  Google Scholar 

  41. Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol. 2016;8:101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016;23:770–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bagoly Z, Katona E, Muszbek L. Factor XIII and inflammatory cells. Thromb Res. 2012;129:S77–81.

    Article  CAS  PubMed  Google Scholar 

  44. Sun H, Kaartinen MT. Transglutaminases in monocytes and macrophages. Med Sci. 2018;6:115.

  45. Church CD, Berry R, Rodeheffer MS. Isolation and study of adipocyte precursors. Methods Enzymol. 2014;537:31–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Orr JS, Kennedy AJ, Hasty AH. Isolation of adipose tissue immune cells. J Visualized Exp. 2013;75:e50707.

    Google Scholar 

  47. Tandon P, Wafer R, Minchin JEN. Adipose morphology and metabolic disease. J Exp Biol. 2018;221(Pt Suppl 1):jeb164970.

  48. Arner E, Westermark PO, Spalding KL, Britton T, Rydén M, Frisén J, et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes. 2010;59:105–9.

    Article  CAS  PubMed  Google Scholar 

  49. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453:783–7.

    Article  CAS  PubMed  Google Scholar 

  50. Veilleux A, Caron-Jobin M, Noël S, Laberge PY, Tchernof A. Visceral adipocyte hypertrophy is associated with dyslipidemia independent of body composition and fat distribution in women. Diabetes. 2011;60:1504–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aeschlimann D, Mosher D, Paulsson M. Tissue transglutaminase and factor XIII in cartilage and bone remodeling. Semin Thromb Hemost. 1996;22:437–43.

    Article  CAS  PubMed  Google Scholar 

  52. Kopec AK, Abrahams SR, Thornton S, Palumbo JS, Mullins ES, Divanovic S, et al. Thrombin promotes diet-induced obesity through fibrin-driven inflammation. J Clin Invest. 2017;127:3152–66.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kim I, Kim HG, Moon SO, Chae SW, So JN, Koh KN, et al. Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ Res. 2000;86:952–9.

    Article  CAS  PubMed  Google Scholar 

  54. Christiaens V, Scroyen I, Lijnen HR. Role of proteolysis in development of murine adipose tissue. Thromb Haemost. 2008;99:290–4.

    Article  CAS  PubMed  Google Scholar 

  55. Van Hul M, Frederix L, Lijnen HR. Role of thrombospondin-2 in murine adipose tissue angiogenesis and development. Obesity. 2012;20:1757–62.

    Article  PubMed  CAS  Google Scholar 

  56. Dorgalaleh A, Rashidpanah J. Blood coagulation factor XIII and factor XIII deficiency. Blood Rev. 2016;30:461–75.

    Article  CAS  PubMed  Google Scholar 

  57. Cohen G, Hadas R, Stefania R, Pagoto A, Ben-Dor S, Kohen F, et al. Magnetic resonance imaging reveals distinct roles for tissue transglutaminase and factor XIII in maternal angiogenesis during early mouse pregnancy. Arterioscler Thromb Vasc Biol. 2019;39:1602–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dardik R, Loscalzo J, Inbal A. Factor XIII (FXIII) and angiogenesis. J Thromb Haemost. 2006;4:19–25.

    Article  CAS  PubMed  Google Scholar 

  59. Inbal A, Dardik R. Role of coagulation factor XIII (FXIII) in angiogenesis and tissue repair. Pathophysiol Haemost Thromb. 2006;35:162–5.

    Article  PubMed  Google Scholar 

  60. Nikolajsen CL, Dyrlund TF, Poulsen ET, Enghild JJ, Scavenius C. Coagulation factor XIIIa substrates in human plasma: identification and incorporation into the clot. J Biol Chem. 2014;289:6526–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wolff G, Taranko AE, Meln I, Weinmann J, Sijmonsma T, Lerch S, et al. Diet-dependent function of the extracellular matrix proteoglycan Lumican in obesity and glucose homeostasis. Mol Metab. 2019;19:97–106.

    Article  CAS  PubMed  Google Scholar 

  62. Taleb S, Lacasa D, Bastard JP, Poitou C, Cancello R, Pelloux V, et al. Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis. FASEB J. 2005;19:1540–2.

    Article  CAS  PubMed  Google Scholar 

  63. Lafarge JC, Pini M, Pelloux V, Orasanu G, Hartmann G, Venteclef N, et al. Cathepsin S inhibition lowers blood glucose levels in mice. Diabetologia. 2014;57:1674–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants to MTK from the Canadian Institutes of Health Research (CIHR) (MOP-119403). MA is supported by an internal stipend, Nyman Award, from the Faculty of Medicine of McGill University. AH is a summer scholar of McGill Initiative in Computational Medicine. AB is supported by Healthy Brains for Healthy Lives initiative at McGill University. SH was supported by Finnish Diabetes Research Foundation, Emil Aaltonen Foundation, Finnish Medical Foundation and Helsinki University Hospital funds. KHP is funded by the Academy of Finland, grant numbers 314383, 266286 and the Academy of Finland, Centre of Excellence in Research on Mitochondria, Metabolism and Disease (FinMIT), grant number 272376; Finnish Medical Foundation; Gyllenberg Foundation; Novo Nordisk Foundation, grant numbers NNF17OC0027232, NNF10OC1013354; Finnish Diabetes Research Foundation; Finnish Foundation for Cardiovascular Research; University of Helsinki, Government Research Funds and Helsinki University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Kaartinen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaartinen, M.T., Arora, M., Heinonen, S. et al. F13A1 transglutaminase expression in human adipose tissue increases in acquired excess weight and associates with inflammatory status of adipocytes. Int J Obes 45, 577–587 (2021). https://doi.org/10.1038/s41366-020-00722-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-00722-0

Search

Quick links