Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical Research

The estimation of GFR and the adjustment for BSA in overweight and obesity: a dreadful combination of two errors

Subjects

Abstract

Background

Obesity is an established risk factor for renal disease and for disease progression. Therefore, an accurate determination of renal function is necessary in this population. Renal function is currently evaluated by estimated glomerular filtration rate (GFR) by formulas, a procedure with a proven high variability. Moreover, the adjustment of GFR by body surface area (BSA) confounds the evaluation of renal function. However, the error of using estimated GFR adjusted by BSA has not been properly evaluated in overweight and obese subjects.

Methods

We evaluated the error of 56 creatinine- and/or cystatin-C-based equations and the adjustment of GFR by BSA in 944 subjects with overweight or obesity with or without chronic kidney disease (CKD). The error between estimated (eGFR) and measured GFR (mGFR) was evaluated with statistics of agreement: the total deviation index (TDI), the concordance correlation coefficient (CCC) and the coverage probability (cp).

Results

The error of eGFR by any equation was common and wide: TDI averaged 55%, meaning that 90% of estimations ranged from −55 to 55% of mGFR. CCC and cp averaged 0.8 and 26, respectively. This error was comparable between creatinine and cystatin-C-based formulas both in obese or overweight subjects. The error of eGFR was larger in formulas that included weight or height. The adjustment of mGFR or eGFR led to a relevant underestimation of renal function, reaching at least 10 mL/min in 25% of the cases.

Conclusions

In overweight and obese patients, formulas failed in reflecting real renal function. In addition, the adjustment for BSA led to a relevant underestimation of GFR. Both errors may have important clinical consequences. Thus, whenever possible, the use of a gold standard method to measure renal function is recommended. Moreover, the sense of indexing for BSA should be re-considered and probably abandoned.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization: obesity and overweight fact sheet. http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accesed 13 Nov 2018.

  2. Pinto-Sietsma SJ, Navis G, Janssen WM, de Zeeuw D, Gans RO, de Jong PE, et al. A central body fat distribution is related to renal function impairment, even in lean subjects. Am J Kidney Dis. 2003;41:733–74.

    Article  PubMed  Google Scholar 

  3. Foster MC, Hwang SJ, Larson MG, Lichtman JH, Parikh NI, Vasan RS. Overweight, obesity, and the development of stage 3 CKD: the framingham heart study. Am J Kidney Dis. 2008;52:39–48.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kramer H, Luke A, Bidani A, Cao G, Cooper R, McGee D. Obesity and prevalent and incident CKD: the hypertension detection and follow-up program. Am J Kidney Dis. 2005;46:587–94.

    Article  PubMed  Google Scholar 

  5. Vivante A, Golan E, Tzur D, Leiba A, Tirosh A, Skorecki K, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med. 2012;172:1644–50.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bonnet F, Deprele C, Sassolas A, Moulin P, Alamartine E, Berthezène F, et al. Excessive body weight as a new independent risk factor for clinical an pathological progression in primary IgA nephritis. Am. J. Kidney Dis. 2001;37:720–7.

    Article  CAS  PubMed  Google Scholar 

  7. Berthoux F, Mariat C, Maillard N. Overweight/obesity revisited as a predictive risk factor in primary IgA nephropathy. Nephrol Dial Transplant. 2013;28 Suppl. 4:iv 160–6.

    CAS  Google Scholar 

  8. Padala S, Tighiouart H, Inker LA, Contreras G, Beck GJ, Lewis J, et al. Accuracy of a GFR estimating equation over time in people with a wide range of kidney function. Am J Kidney Dis. 2012;60:217–24.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Inker LA, Tighiouart H, Coresh J, Foster MC, Anderson AH, Beck GJ. GFR estimation using β-trace protein and β2-microglobulin in CKD. Am J Kidney Dis. 2016;67:40–8.

    Article  CAS  PubMed  Google Scholar 

  10. Iliadis F, Didangelos T, Ntemka A, Makedou A, Moralidis E, Gotzamani-Psarakou A, et al. Glomerular filtration rate estimation in patients with type 2 diabetes: creatinine- or cystatin-C-based equations? Diabetologia. 2011;54:2987–94.

    Article  CAS  PubMed  Google Scholar 

  11. Gaspari F, Ruggenenti P, Porrini E, Motterlini N, Cannata A, Carrara F, et al. The GFR and GFR decline cannot be accurately estimated in type 2 diabetics. Kidney Int. 2013;84:164–73.

    Article  CAS  PubMed  Google Scholar 

  12. Bosma RJ, Doorenbos CR, Stegeman CA, Van der Heide JJ, Navis G. Predictive performance of renal function equations in renal transplant recipients: an analysis of patient factors in bias. Am J Transplant. 2005;5:2193–203.

    Article  PubMed  Google Scholar 

  13. Luis-Lima S, Marrero-Miranda D, González-Rinne A, Torres A, González-Posada JM, Rodríguez A, et al. Estimated glomerular filtration rate in renal transplantation: the nephrologist in the mist. Transplantation. 2015;99:2625–33.

    Article  PubMed  Google Scholar 

  14. Ruggenenti P, Gaspari F, Cannata A, Carrara F, Cella C, Ferrari S, et al. Measuring and estimating GFR and treatment effect in ADPKD patients: results and implications of a longitudinal cohort study. PLoS One. 2012;7:e32533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Craig AJ, Samol J, Heenan SD, Irin AG, Britten A. Overestimation of carboplatin doses is avoided by radionuclide GFR measurement. Br J Cancer. 2012;107:1310–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smilde TD, van Veldhuisen DJ, Navis G, Voors AA, Hillege HL. Drawbacks and prognostic value of formulas estimating renal function in patients with chronic heart failure and systolic dysfunction. Circulation. 2006;114:1572–80.

    Article  PubMed  Google Scholar 

  17. Francoz C, Nadim MK, Baron A, Prié D, Antoine C, Belghiti J, et al. Glomerular filtration rate equations for liver-kidney transplantation in patients with cirrhosis: validation of current recommendations. Hepatology. 2014;59:1514–21.

    Article  PubMed  Google Scholar 

  18. Lemoine S, Panaye M, Pelletier C, Bon C, Juillard L, Dubourg L, et al. Cystatin-C-creatinine based glomerular filtration rate equation in obese chronic kidney disease patients: impact of deindexation and gender. Am J Nephrol. 2016;44:63–70.

    Article  CAS  PubMed  Google Scholar 

  19. Friedman AN, Strother M, Quinney SK, Hall S, Perkins SM, Brizendine EJ, et al. Measuring the glomerular filtration rate in obese individuals without overt kidney disease. Nephron Clin Pract. 2010;116:c224–c234.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ozmen S, Kaplan MA, Kaya H, Akin D, Danis R, Kizilkan B, et al. Role of lean body mass for estimation of glomerular filtration rate in patients with chronic kidney disease with various body mass indices. Scand J Urol Nephrol. 2009;43:171–6.

    Article  CAS  PubMed  Google Scholar 

  21. Verhave JC, Fesler P, Ribstein J, du Cailar G, Mimran A. Estimation of renal function in subjects with normal serum creatinine levels: Influence of age and body mass index. Am J Kidney Dis. 2005;46:233–41.

    Article  CAS  PubMed  Google Scholar 

  22. Bouquegneau A, Vidal-Petiot E, Moranne O, Mariat C, Boffa JJ, Vrtovsnik F, et al. Creatinine-based equations for the adjustment of drug dosage in an obese population. Br J Clin Pharmacol. 2016;81:349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lemoine S, Guebre-Egziabher F, Sens F, Nguyen-Tu MS, Juillard L, Dubourg L, et al. Accuracy of GFR estimation in Obese Patients. Clin J Am Soc Nephrol. 2014;9:720–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Von Scholten BJ, Persson F, Svan MS, Hansen TW, Madsbad S, Rossing P. Effect of large weight reductions on measured and estimated kidney function. BMC Nephrol. 2017;18:52.

  25. Redal-Baigorri B, Rasmussen K, Goya-Heaf J. The use of absolute values improves performance of estimation formulae: a retrospective cross sectional study. BMC Nephrol. 2013;14:271.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Delanaye P, Radermecker RP, Rovire M, Depas G, Krzesinki JM. Indexing glomerular filtration rate for body surface area in obese patients is misleading: concept and example. Nephrol Dial Transplant. 2005;20:2024–8.

    Article  PubMed  Google Scholar 

  27. Delanaye P, Mariat C, Cavalier E, Krzesinski JM. Errors induced by indexing glomerular filtration rate for body surface area: reductio ad absurdum. Nephrol Dial Transplant. 2009;24:3593–6.

    Article  PubMed  Google Scholar 

  28. Delanaye P, Krzesinski JM. Indexing of renal function parameters by body surface area: intelligence of folly? Nephron Clin Pract. 2011;119:c289–c292.

    Article  PubMed  Google Scholar 

  29. Nyengaard JR, Bendsten TF. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec. 1992;232:194–201.

    Article  CAS  PubMed  Google Scholar 

  30. Hughson M, Farris AB 3rd, Douglas-Denton R, Hoy WE, Bertram JF. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 2003;63:2113–22.

    Article  PubMed  Google Scholar 

  31. D'Agati V, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016;12:453–71.

    Article  CAS  PubMed  Google Scholar 

  32. Luis-Lima S, Marrero-Miranda D, González-Rinne A, Torres A, González-Posada JM, Rodríguez A, et al. Estimated Glomerular Filtration Rate in Renal. Transplantation. 2015;99:2625–33.

    Article  PubMed  Google Scholar 

  33. Luis-Lima S, Gaspari F, Negrín-Mena N, Carrara F, Díaz-Martín L, Jímenez-Sosa A, et al. Iohexol plasma clearance simplified by dried blood spot testing. Nephrol Dial Transplant. 2017;2017. https://doi.org/10.1093/ndt/gfx323.

  34. Bröchner-Mortensen J. A simple method for the determination of glomerular filtration rate. Scand J Clin Lab Investig. 1972;30:271–4.

    Article  Google Scholar 

  35. Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition. 1989;5:303–11.

    PubMed  Google Scholar 

  36. Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45:255–68.

    Article  CAS  PubMed  Google Scholar 

  37. Lin L, Hedayat AS, Wu W. A comparative model for continuous and categorical data. In: Lin L, Hedayat AS, Wu W, editors. Statistical tools for measuring agreement. New York: Springer; 2012. p. 111–137.

  38. Lin L, Hedayat AS, Sinha B, Yang M. Statistical methods in assessing agreement. J Am Stat Assoc. 2002;97:257.

    Article  Google Scholar 

  39. Delanaye P, Ebert N, Melsom T, Gaspari F, Mariat C, et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: how to measure glomerular filtration rate with iohexol? Clin Kidney J. 2016;9:682–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Altman DG, editor. Practical statistics for medical research. London: Chapman and Hall; 1991.

  41. Porrini E, Ruggenenti P, Luis-Lima S, Carrara F, Jiménez A, de Vries APJ, et al. Estimated GFR: time for critical appraisal. Nat Rev Nephrol. 2019;15:177–90.

    Article  CAS  PubMed  Google Scholar 

  42. Rubner M. Ueber den Einfluss der Körpergrösse auf Stoff- und Kraftwechsel. Zeitschrift für Biologie. 1883;19:535–62.

    Google Scholar 

  43. Slone TH. Body surface area misconceptions. Risk Anal. 1993;13:375–7.

    Article  CAS  PubMed  Google Scholar 

  44. Gibson S, Numa A. The importance of metabolic rate and the folly of body surface area calculations. Anaesthesia. 2003;58:50–5.

    Article  CAS  PubMed  Google Scholar 

  45. Turner ST, Reilly SL. Fallacy of indexing renal and systemic hemodynamic measurements for body surface area. Am J Physiol. 1995;268:R978–R988.

    Article  CAS  PubMed  Google Scholar 

  46. Mcintosh JF, Möller R, VanSlyke DD. Studies of urea excretions: the influence of body size on urea output. J Clin Investig. 1928;6:467–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dooley MJ, Poole SG. Poor correlation between body surface area and glomerular filtration rate. Cancer Chemother Pharmacol. 2000;46:523–6.

    Article  CAS  PubMed  Google Scholar 

  48. Chagnac A, Weinstein T, Korzets A, Ramadan E, Hirsch J, Gafter U. Glomerular hemodynamics in severe obesity. Am J Physiol. 2000;278:F817–F822.

    CAS  Google Scholar 

  49. Dubois D, Dubois E. The measurement of the surface area of man. Arch Intern Med. 1915;16:868–81.

    Article  Google Scholar 

  50. KDIGO. CKD Evaluation & Management. KDIGO. http://kdigo.org/home/guidelines/ckd-evaluation-management.

  51. EMA. Guideline on the evaluation of the pharmacokinetics of 4 medicinal products in patients with decreased renal 5 function. EMA. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/02/WC500162133.pdf.

  52. FDA. Pharmacokinetics in patients with impaired renal function-study design, data analysis, and impact on dosing and labeling. FDA. http://www.fda.gov/downloads/Drugs/Guidances/UCM204959.pdf.

  53. Luis-Lima S, Gaspari F, Porrini E, García-González M, Batista N, Bosa-Ojeda F, et al. Measurement of glomerular filtration rate: internal and external validations of the iohexol plasma clearance technique by HPLC. Clin Chim Acta. 2014;430:84–5.

    Article  CAS  PubMed  Google Scholar 

  54. Soveri I, Berg UB, Björk J, Elinder CG, Grubb A, Mejare I, et al. SBU GFR review group. Measuring GFR: a systematic review. Am J Kidney Dis. 2014;64:411–24.

    Article  PubMed  Google Scholar 

  55. Gaspari F, Thakar S, Carrara F, Perna A, Trillini M, Aparicio MC, et al. Safety of iohexol administration to measure glomerular filtration rate in different patient populations: a 25-year experience. Nephron. 2018;140:1–8.

    Article  CAS  PubMed  Google Scholar 

  56. Delanaye P, Melsom T, Ebert N, Bäck SE, Mariat C, Cavalier E, et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 2: why to measure glomerular filtration rate with iohexol? Clin Kidney J. 2016;9:700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Instituto de Tecnologías Biomédicas (ITB), the DISA Foundation, the Spanish Society of Nephrology (SENEFRO) and the IMBRAIN project for support (FP7-RE6-POT-2012-CT2012-31637-IMBRAIN) funded under the 7th Frameworks Programme capacities.

Funding

SLL is a researcher of the Juan Rodés Contract (Grant number: JR18/00027) of the Instituto de Salud Carlos III (Spain). EP is a researcher of the Programme Ramón y Cajal (Grant number: RYC-2014-16573) of the Ministerio de Ciencia, Innovación y Universidades (Spain). This study was supported by grants from the Instituto de Salud Carlos III (Grant numbers: PI13/00342 and PI16/01814) and Red de Investigación Renal (REDinREN) (Grant number: RD16/0009/0031).

Author information

Authors and Affiliations

Authors

Contributions

MLM, SLL and EP had the idea of the study. EM, MND, TF, BE, SE, PDM, DMM, AGR, RMMR, MACC and AT helped in the performance of the study. LDM and NNM performed the plasma clearance of iohexol. SLL evaluated the GFR determination. FGR design the figures and AJS performed the statistical analysis.

Corresponding author

Correspondence to Esteban Porrini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Martínez, M., Luis-Lima, S., Morales, E. et al. The estimation of GFR and the adjustment for BSA in overweight and obesity: a dreadful combination of two errors. Int J Obes 44, 1129–1140 (2020). https://doi.org/10.1038/s41366-019-0476-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-019-0476-z

This article is cited by

Search

Quick links