Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Basic Research

Identification of novel DNA-methylated genes that correlate with human prostate cancer and high-grade prostatic intraepithelial neoplasia

A Corrigendum to this article was published on 12 February 2014

Abstract

Background:

Prostate cancer (PCa) harbors a myriad of genomic and epigenetic defects. Cytosine methylation of CpG-rich promoter DNA is an important mechanism of epigenetic gene inactivation in PCa. There is considerable amount of data to suggest that DNA methylation-based biomarkers may be useful for the early detection and diagnosis of PCa. In addition, candidate gene-based studies have shown an association between specific gene methylation and alterations and clinicopathologic indicators of poor prognosis in PCa.

Methods:

To more comprehensively identify DNA methylation alterations in PCa initiation and progression, we examined the methylation status of 485 577 CpG sites from regions with a broad spectrum of CpG densities, interrogating both gene-associated and non-associated regions using the recently developed Illumina 450K methylation platform.

Results:

In all, we selected 33 promoter-associated novel CpG sites that were differentially methylated in high-grade prostatic intraepithelial neoplasia and PCa in comparison with benign prostate tissue samples (false discovery rate-adjusted P-value <0.05; β-value 0.2; fold change >1.5). Of the 33 genes, hierarchical clustering analysis demonstrated BNC1, FZD1, RPL39L, SYN2, LMX1B, CXXC5, ZNF783 and CYB5R2 as top candidate novel genes that are frequently methylated and whose methylation was associated with inactivation of gene expression in PCa cell lines. Pathway analysis of the genes with altered methylation patterns identified the involvement of a cancer-related network of genes whose activity may be regulated by TP53, MYC, TNF, IL1 and 6, IFN-γ and FOS in prostate pathogenesis.

Conclusion:

Our genome-wide methylation profile shows epigenetic dysregulation of important regulatory signals in prostate carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Iljin K, Wolf M, Edgren H, Gupta S, Kilpinen S, Skotheim RI et al. TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res 2006; 66: 10242–10246.

    Article  CAS  PubMed  Google Scholar 

  2. Macaluso M, Paggi MG, Giordano A . Genetic and epigenetic alterations as hallmarks of the intricate road to cancer. Oncogene 2003; 22: 6472–6478.

    Article  CAS  PubMed  Google Scholar 

  3. Nelson WG, Yegnasubramanian S, Agoston AT, Bastian PJ, Lee BH, Nakayama M et al. Abnormal DNA methylation, epigenetics, and prostate cancer. Front Biosci 2007; 12: 4254–4266.

    Article  CAS  PubMed  Google Scholar 

  4. Kwabi-Addo B, Chung W, Shen L, Ittmann M, Wheeler T, Jelinek J et al. Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res 2007; 13: 3796–3802.

    Article  CAS  PubMed  Google Scholar 

  5. Hmadcha A, Bedoya FJ, Sobrino F, Pintado E . Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production. J Exp Med 1999; 190: 1595–1604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herman JG, Baylin SB . Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349: 2042–2054.

    Article  CAS  PubMed  Google Scholar 

  7. Perry AS, Foley R, Woodson K, Lawler M . The emerging roles of DNA methylation in the clinical management of prostate cancer. Endocr Relat Cancer 2006; 13: 357–377.

    Article  CAS  PubMed  Google Scholar 

  8. Bird A . DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6–21.

    Article  CAS  PubMed  Google Scholar 

  9. Illingworth RS, Bird AP . CpG islands—'a rough guide'. FEBS Lett 2009; 583: 1713–1720.

    Article  CAS  PubMed  Google Scholar 

  10. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ongenaert M, Van NL, De MT, Menschaert G, Bekaert S, Van Criekinge W . PubMeth: a cancer methylation database combining text-mining and expert annotation. Nucleic Acids Res 2008; 36: D842–D846.

    Article  CAS  PubMed  Google Scholar 

  12. Li LC, Carroll PR, Dahiya R . Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst 2005; 97: 103–115.

    Article  CAS  PubMed  Google Scholar 

  13. Kron K, Pethe V, Briollais L, Sadikovic B, Ozcelik H, Sunderji A et al. Discovery of novel hypermethylated genes in prostate cancer using genomic CpG island microarrays. PLoS One 2009; 4: e4830.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Laird PW . Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 2010; 11: 191–203.

    Article  CAS  PubMed  Google Scholar 

  15. Yegnasubramanian S, Nelson WG . Genome-wide DNA methylation analysis in cancer research. In: Yegnasubramanian S, Isaac WB, (eds). Modern Biology: Approaches for Unbiased Discovery in Cancer Research. Springer: New York, NY, USA, 2010; pp 47–66.

    Chapter  Google Scholar 

  16. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M et al. Validation of a DNA methylation microarray for 450 000 CpG sites in the human genome. Epigenetics 2011; 6: 692–702.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 2013; 31: 142–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sapienza C, Lee J, Powell J, Erinle O, Yafai F, Reichert J et al. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics 2011; 6: 20–28.

    Article  CAS  PubMed  Google Scholar 

  19. Toperoff G, Aran D, Kark JD, Rosenberg M, Dubnikov T, Nissan B et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet 2012; 21: 371–383.

    Article  CAS  PubMed  Google Scholar 

  20. Gardiner-Garden M, Frommer M . CpG islands in vertebrate genomes. J Mol Biol 1987; 196: 261–282.

    Article  CAS  PubMed  Google Scholar 

  21. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L et al. Comparison of beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 2010; 11: 587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Polnaszek N, Kwabi-Addo B, Peterson LE, Ozen M, Greenberg NM, Ortega S et al. Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Res 2003; 63: 5754–5760.

    CAS  PubMed  Google Scholar 

  23. Kwabi-Addo B, Wang J, Erdem H, Vaid A, Castro P, Ayala G et al. The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res 2004; 64: 4728–4735.

    Article  CAS  PubMed  Google Scholar 

  24. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ et al. A network-based analysis of systemic inflammation in humans. Nature 2005; 437: 1032–1037.

    Article  CAS  PubMed  Google Scholar 

  25. Kim SJ, Kelly WK, Fu A, Haines K, Hoffmann A, Zheng T et al. Genome-wide methylation analysis identifies involvement of TNF-alpha mediated cancer pathways in prostate cancer. Cancer Lett 2011; 302: 47–53.

    Article  CAS  PubMed  Google Scholar 

  26. Jaenisch R, Bird A . Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33: 245–254.

    Article  CAS  PubMed  Google Scholar 

  27. Jones PA, Baylin SB . The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 415–428.

    Article  CAS  PubMed  Google Scholar 

  28. Feinberg AP, Vogelstein B . Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301: 89–92.

    Article  CAS  PubMed  Google Scholar 

  29. Ahmed H . Promoter methylation in prostate cancer and its application for the early detection of prostate cancer using serum and urine samples. Biomark Cancer 2010; 2010: 17–33.

    PubMed  Google Scholar 

  30. Kwabi-Addo B, Wang S, Chung W, Jelinek J, Patierno SR, Wang DB et al. Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men. Clin Cancer Res 2010; 16: 3539–3547.

    Article  CAS  PubMed  Google Scholar 

  31. Jones PA, Taylor SM . Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980; 20: 85–93.

    Article  CAS  PubMed  Google Scholar 

  32. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998; 19: 187–191.

    Article  CAS  PubMed  Google Scholar 

  33. Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 1999; 23: 58–61.

    Article  CAS  PubMed  Google Scholar 

  34. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB . Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21: 103–107.

    Article  CAS  PubMed  Google Scholar 

  35. Tseng H, Biegel JA, Brown RS . Basonuclin is associated with the ribosomal RNA genes on human keratinocyte mitotic chromosomes. J Cell Sci 1999; 112 (Pt 18): 3039–3047.

    CAS  PubMed  Google Scholar 

  36. Boldrup L, Coates PJ, Laurell G, Nylander K . p63 Transcriptionally regulates BNC1, a Pol I and Pol II transcription factor that regulates ribosomal biogenesis and epithelial differentiation. Eur J Cancer 2012; 48: 1401–1406.

    Article  CAS  PubMed  Google Scholar 

  37. Morris MR, Ricketts C, Gentle D, Abdulrahman M, Clark N, Brown M et al. Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 2010; 29: 2104–2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tong WG, Wierda WG, Lin E, Kuang SQ, Bekele BN, Estrov Z et al. Genome-wide DNA methylation profiling of chronic lymphocytic leukemia allows identification of epigenetically repressed molecular pathways with clinical impact. Epigenetics 2010; 5: 499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu QL, Zierold C, Ranheim EA . Dysregulation of Frizzled 6 is a critical component of B-cell leukemogenesis in a mouse model of chronic lymphocytic leukemia. Blood 2009; 113: 3031–3039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Salpea P, Russanova VR, Hirai TH, Sourlingas TG, Sekeri-Pataryas KE, Romero R et al. Postnatal development- and age-related changes in DNA-methylation patterns in the human genome. Nucleic Acids Res 2012; 40: 6477–6494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Holcombe RF, Marsh JL, Waterman ML, Lin F, Milovanovic T, Truong T . Expression of Wnt ligands and Frizzled receptors in colonic mucosa and in colon carcinoma. Mol Pathol 2002; 55: 220–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang H, Zhang X, Wu X, Li W, Su P, Cheng H et al. Interference of Frizzled 1 (FZD1) reverses multidrug resistance in breast cancer cells through the Wnt/beta-catenin pathway. Cancer Lett 2012; 323: 106–113.

    Article  CAS  PubMed  Google Scholar 

  43. Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D et al. The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/beta-catenin pathway. Oncogene 2009; 28: 2245–2256.

    Article  CAS  PubMed  Google Scholar 

  44. Ball MP, Li JB, Gao Y, Lee JH, Leproust EM, Park IH et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 2009; 27: 361–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One 2011; 6: e14524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perry AS, O'Hurley G, Raheem OA, Brennan K, Wong S, O'Grady A et al. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer. Int J Cancer 2012; 132: 1771–1780.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang S, Dorsey TH, Terunuma A, Kittles RA, Ambs S, Kwabi-Addo B . Relationship between tumor DNA methylation status and patient characteristics in African-American and European-American women with breast cancer. PLoS One 2012; 7: e37928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ekhart C, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD . An overview of the relations between polymorphisms in drug metabolising enzymes and drug transporters and survival after cancer drug treatment. Cancer Treat Rev 2009; 35: 18–31.

    Article  CAS  PubMed  Google Scholar 

  49. Deeken JF, Cormier T, Price DK, Sisung TM, Steinberg SM, Tran K et al. A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics J 2010; 10: 191–199.

    Article  CAS  PubMed  Google Scholar 

  50. Jeronimo C, Varzim G, Henrique R, Oliveira J, Bento MJ, Silva C et al. I105V polymorphism and promoter methylation of the GSTP1 gene in prostate adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2002; 11: 445–450.

    CAS  PubMed  Google Scholar 

  51. Nakayama M, Bennett CJ, Hicks JL, Epstein JI, Platz ZA, Nelson WG et al. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol 2003; 163: 923–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yamanaka M, Watanabe M, Yamada Y, Takagi A, Murata T, Takahashi H et al. Altered methylation of multiple genes in carcinogenesis of the prostate. Int J Cancer 2003; 106: 382–387.

    Article  CAS  PubMed  Google Scholar 

  53. Jeronimo C, Henrique R, Hoque MO, Mambo E, Ribeiro FR, Varzim G et al. A quantitative promoter methylation profile of prostate cancer. Clin Cancer Res 2004; 10: 8472–8478.

    Article  CAS  PubMed  Google Scholar 

  54. Jeronimo C, Henrique R, Hoque MO, Ribeiro FR, Oliveira J, Fonseca D et al. Quantitative RARbeta2 hypermethylation: a promising prostate cancer marker. Clin Cancer Res 2004; 10: 4010–4014.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from Department of Defense Program Idea Award; PC101996 to Bernard Kwabi-Addo. This work is also supported by the use of facilities at Howard University Department of Biochemistry and Molecular Biology, and Children’s National Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Kwabi-Addo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devaney, J., Wang, S., Funda, S. et al. Identification of novel DNA-methylated genes that correlate with human prostate cancer and high-grade prostatic intraepithelial neoplasia. Prostate Cancer Prostatic Dis 16, 292–300 (2013). https://doi.org/10.1038/pcan.2013.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2013.21

Keywords

This article is cited by

Search

Quick links