Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

HUS1 regulates in vivo responses to genotoxic chemotherapies

Abstract

Cells are under constant attack from genotoxins and rely on a multifaceted DNA damage response (DDR) network to maintain genomic integrity. Central to the DDR are the ATM and ATR kinases, which respond primarily to double-strand DNA breaks (DSBs) and replication stress, respectively. Optimal ATR signaling requires the RAD9A-RAD1-HUS1 (9-1-1) complex, a toroidal clamp that is loaded at damage sites and scaffolds signaling and repair factors. Whereas complete ATR pathway inactivation causes embryonic lethality, partial Hus1 impairment has been accomplished in adult mice using hypomorphic (Hus1neo) and null (Hus1Δ1) Hus1 alleles, and here we use this system to define the tissue- and cell type-specific actions of the HUS1-mediated DDR in vivo. Hus1neo/Δ1 mice showed hypersensitivity to agents that cause replication stress, including the crosslinking agent mitomycin C (MMC) and the replication inhibitor hydroxyurea, but not the DSB inducer ionizing radiation. Analysis of tissue morphology, genomic instability, cell proliferation and apoptosis revealed that MMC treatment caused severe damage in highly replicating tissues of mice with partial Hus1 inactivation. The role of the 9-1-1 complex in responding to MMC was partially ATR-independent, as a HUS1 mutant that was proficient for ATR-induced checkpoint kinase 1 phosphorylation nevertheless conferred MMC hypersensitivity. To assess the interplay between the ATM and ATR pathways in responding to replication stress in vivo, we used Hus1/Atm double mutant mice. Whereas Hus1neo/neo and Atm−/− single mutant mice survived low-dose MMC similar to wild-type controls, Hus1neo/neoAtm−/− double mutants showed striking MMC hypersensitivity, consistent with a model in which MMC exposure in the context of Hus1 dysfunction results in DSBs to which the ATM pathway normally responds. This improved understanding of the inter-dependency between two major DDR mechanisms during the response to a conventional chemotherapeutic illustrates how inhibition of checkpoint factors such as HUS1 may be effective for the treatment of ATM-deficient and other cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cimprich KA, Cortez D . ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 2008; 9: 616–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McKinnon PJ . ATM and the molecular pathogenesis of ataxia telangiectasia. Annu Rev Pathol 2012; 7: 303–321.

    Article  CAS  PubMed  Google Scholar 

  3. McKinnon PJ, Caldecott KW . DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet 2007; 8: 37–55.

    Article  CAS  PubMed  Google Scholar 

  4. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 1996; 86: 159–171.

    Article  CAS  PubMed  Google Scholar 

  5. Elson A, Wang Y, Daugherty CJ, Morton CC, Zhou F, Campos-Torres J et al. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci USA 1996; 93: 13084–13089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D . Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 1996; 10: 2411–2422.

    Article  CAS  PubMed  Google Scholar 

  7. Kass EM, Helgadottir HR, Chen C-C, Barbera M, Wang R, Westermark UK et al. Double-strand break repair by homologous recombination in primary mouse somatic cells requires BRCA1 but not the ATM kinase. Proc Natl Acad Sci USA 2013; 110: 5564–5569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Delacroix S, Wagner JM, Kobayashi M, Yamamoto K-I, Karnitz LM . The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 2007; 21: 1472–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cotta-Ramusino C, McDonald ER, Hurov K, Sowa ME, Harper JW, Elledge SJ . A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science 2011; 332: 1313–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Helt CE, Wang W, Keng PC, Bambara RA . Evidence that DNA damage detection machinery participates in DNA repair. Cell Cycle 2005; 4: 529–532.

    Article  CAS  PubMed  Google Scholar 

  11. Wang W, Lindsey-Boltz LA, Sancar A, Bambara RA . Mechanism of stimulation of human DNA ligase I by the Rad9-rad1-Hus1 checkpoint complex. J Biol Chem 2006; 281: 20865–20872.

    Article  CAS  PubMed  Google Scholar 

  12. Friedrich-Heineken E, Toueille M, Tännler B, Bürki C, Ferrari E, Hottiger MO et al. The two DNA clamps Rad9/Rad1/Hus1 complex and proliferating cell nuclear antigen differentially regulate Flap endonuclease 1 activity. J Mol Biol 2005; 353: 980–989.

    Article  CAS  PubMed  Google Scholar 

  13. Kai M, Wang TSF . Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev 2003; 17: 64–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bai H, Madabushi A, Guan X, Lu A-L . Interaction between human mismatch repair recognition proteins and checkpoint sensor Rad9-Rad1-Hus1. DNA Repair 2010; 9: 478–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O'Driscoll M . Diseases associated with defective responses to DNA damage. Cold Spring Harb Perspect Biol 2012; 4: a012773.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goodship J, Gill H, Carter J, Jackson A, Splitt M, Wright M . Autozygosity mapping of a Seckel Syndrome locus to chromosome 3q22.1-q24. Am J Hum Genet 2000; 67: 498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O'Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA . A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nature Genet 2003; 33: 497–501.

    Article  CAS  PubMed  Google Scholar 

  18. Han L, Hu Z, Liu Y, Wang X, Hopkins KM, Lieberman HB et al. Mouse Rad1 deletion enhances susceptibility for skin tumor development. Mol Cancer 2010; 9: 67.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jeon Y, Ko E, Lee KY, Ko MJ, Park SY, Kang J et al. TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells. J Biol Chem 2011; 286: 5414–5422.

    Article  CAS  PubMed  Google Scholar 

  20. Brown EJ, Baltimore D . ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 2000; 14: 397–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 2000; 14: 1448–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weiss RS, Enoch T, Leder P . Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev 2000; 14: 1886–1898.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hopkins KM, Auerbach W, Wang XY, Hande MP, Hang H, Wolgemuth DJ et al. Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol Cell Biol 2004; 24: 7235–7248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murga M, Bunting S, Montaña MF, Soria R, Mulero F, Cañamero M et al. A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nature Genet 2009; 41: 891–898.

    Article  CAS  PubMed  Google Scholar 

  25. Smith J, Tho LM, Xu N, Gillespie DA . The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 2010; 108: 73–112.

    Article  CAS  PubMed  Google Scholar 

  26. Lam MH, Liu Q, Elledge SJ, Rosen JM . Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 2004; 6: 45–59.

    Article  CAS  PubMed  Google Scholar 

  27. Gilad O, Nabet BY, Ragland RL, Schoppy DW, Smith KD, Durham AC et al. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res 2010; 70: 9693–9702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maniwa Y, Yoshimura M, Bermudez VP, Yuki T, Okada K, Kanomata N et al. Accumulation of hRad9 protein in the nuclei of nonsmall cell lung carcinoma cells. Cancer 2005; 103: 126–132.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu A, Zhang CX, Lieberman HB . Rad9 has a functional role in human prostate carcinogenesis. Cancer Res 2008; 68: 1267–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D et al. Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 2008; 68: 4674–4682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montaña MF et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 2011; 18: 1331–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schoppy DW, Ragland RL, Gilad O, Shastri N, Peters AA, Murga M et al. Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR. J Clin Invest 2012; 122: 241–252.

    Article  CAS  PubMed  Google Scholar 

  33. Kawasumi M, Lemos B, Bradner JE, Thibodeau R, Kim Y-S, Schmidt M et al. Protection from UV-induced skin carcinogenesis by genetic inhibition of the ataxia telangiectasia and Rad3-related (ATR) kinase. Proc Natl Acad Sci USA 2011; 108: 13716–13721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo J, Solimini NL, Elledge SJ . Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009; 136: 823–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jackson SP, Bartek J . The DNA-damage response in human biology and disease. Nature 2009; 461: 1071–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434: 917–921.

    Article  CAS  PubMed  Google Scholar 

  37. Ellisen LW . PARP inhibitors in cancer therapy: promise, progress, and puzzles. Cancer Cell 2011; 19: 165–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma CX, Cai S, Li S, Ryan CE, Guo Z, Schaff TW et al. Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J Clin Invest 2012; 122: 1541–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Origanti S, Cai S-R, Munir AZ, White LS, Piwnica-Worms H . Synthetic lethality of Chk1 inhibition combined with p53 and/or p21 loss during a DNA damage response in normal and tumor cells. Oncogene 2013; 32: 577–588.

    Article  CAS  PubMed  Google Scholar 

  40. Reaper PM, Griffiths MR, Long JM, Charrier J-D, Maccormick S, Charlton PA et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 2011; 7: 428–430.

    Article  CAS  PubMed  Google Scholar 

  41. Hall AB, Newsome D, Wang Y, Boucher DM, Eustace B, Gu Y et al. Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970. Oncotarget 2014; 5: 5674–5685.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bartek J, Mistrik M, Bartkova J . Thresholds of replication stress signaling in cancer development and treatment. Nat Struct Mol Biol 2012; 19: 5–7.

    Article  CAS  PubMed  Google Scholar 

  43. Broustas CG, Lieberman HB . DNA damage response genes and the development of cancer metastasis. Radiat Res 2014; 181: 111–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levitt PS, Liu H, Manning C, Weiss RS . Conditional inactivation of the mouse Hus1 cell cycle checkpoint gene. Genomics 2005; 86: 212–224.

    Article  CAS  PubMed  Google Scholar 

  45. Levitt PS, Zhu M, Cassano A, Yazinski SA, Liu H, Darfler J et al. Genome maintenance defects in cultured cells and mice following partial inactivation of the essential cell cycle checkpoint gene Hus1. Mol Cell Biol 2007; 27: 2189–2201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kinzel B, Hall J, Natt F, Weiler J, Cohen D . Downregulation of Hus1 by antisense oligonucleotides enhances the sensitivity of human lung carcinoma cells to cisplatin. Cancer 2005; 94: 1808–1814.

    Article  Google Scholar 

  47. Church D, Kerr R, Domingo E, Rosmarin D, Palles C, Maskell K et al. “Toxgnostics”: an unmet need in cancer medicine. Nat Rev Cancer 2014; 14: 440–445.

    Article  CAS  PubMed  Google Scholar 

  48. Potten CS . A comprehensive study of the radiobiological response of the murine (BDF1) small intestine. Int J Radiat Biol 1990; 58: 925–973.

    Article  CAS  PubMed  Google Scholar 

  49. Flynn RL, Zou L . ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci 2011; 36: 133–140.

    Article  CAS  PubMed  Google Scholar 

  50. Kottemann MC, Smogorzewska A . Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 2013; 493: 356–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weiss RS, Matsuoka S, Elledge SJ, Leder P . Hus1 acts upstream of Chk1 in a mammalian DNA damage response pathway. Current Biol 2002; 12: 73–77.

    Article  CAS  Google Scholar 

  52. Xu X, Guardiani C, Yan C, Ivanov I . Opening pathways of the DNA clamps proliferating cell nuclear antigen and Rad9-Rad1-Hus1. Nucleic Acids Res 2013; 41: 10020–10031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jansen JG, Fousteri MI, de Wind N . Send in the clamps: control of DNA translesion synthesis in eukaryotes. Mol Cell 2007; 28: 522–529.

    Article  CAS  PubMed  Google Scholar 

  54. Shiotani B, Zou L . ATR signaling at a glance. J Cell Sci 2009; 122: 301–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maréchal A, Zou L . DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 2013; 5: a012716–a012716.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007; 316: 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  57. Adams KE, Medhurst AL, Dart DA, Lakin ND . Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 2006; 25: 3894–3904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jazayeri A, Falck J, Lukas C, Bartek J, Smith GCM, Lukas J et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 2006; 8: 37–45.

    Article  CAS  PubMed  Google Scholar 

  59. Weiss RS, Leder P, Vaziri C . Critical role for mouse Hus1 in an S-phase DNA damage cell cycle checkpoint. Mol Cell Biol 2003; 23: 791–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Balmus G, Zhu M, Mukherjee S, Lyndaker AM, Hume KR, Lee J et al. Disease severity in a mouse model of ataxia telangiectasia is modulated by the DNA damage checkpoint gene Hus1. Hum Mol Genet 2012; 21: 3408–3420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW . Cancer genome landscapes. Science 2013; 339: 1546–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 2007; 1: 113–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yazinski SA, Westcott PMK, Ong K, Pinkas J, Peters RM, Weiss RS . Dual inactivation of Hus1 and p53 in the mouse mammary gland results in accumulation of damaged cells and impaired tissue regeneration. Proc Natl Acad Sci USA 2009; 106: 21282–21287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fokas E, Prevo R, Hammond EM, Brunner TB, McKenna WG, Muschel RJ . Targeting ATR in DNA damage response and cancer therapeutics. Cancer Treat Rev 2014; 40: 109–117.

    Article  CAS  PubMed  Google Scholar 

  65. Brooks K, Oakes V, Edwards B, Ranall M, Leo P, Pavey S et al. A potent Chk1 inhibitor is selectively cytotoxic in melanomas with high levels of replicative stress. Oncogene 2013; 32: 788–796.

    Article  CAS  PubMed  Google Scholar 

  66. Tang Y, Dai Y, Grant S, Dent P . Enhancing CHK1 inhibitor lethality in glioblastoma. Cancer Biol Ther 2012; 13: 379–8867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. la Torre de J, Gil-Moreno A, García A, Rojo F, Xercavins J, Salido E et al. Expression of DNA damage checkpoint protein Hus1 in epithelial ovarian tumors correlates with prognostic markers. Int J Gynecol Pathol 2008; 27: 24–32.

    Article  Google Scholar 

  68. Broustas CG, Zhu A, Lieberman HB . Rad9 protein contributes to prostate tumor progression by promoting cell migration and anoikis resistance. J Biol Chem 2012; 287: 41324–41333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lyndaker AM, Lim PX, Mleczko JM, Diggins CE, Holloway JK, Holmes RJ et al. Conditional inactivation of the DNA damage response gene Hus1 in mouse testis reveals separable roles for components of the RAD9-RAD1-HUS1 complex in meiotic chromosome maintenance. PLoS Genet 2013; 9: e1003320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Amy Lyndaker, Steve Jackson and Yaron Galanti for helpful discussions and comments on the manuscript; Natasha Karp for help with statistical analysis and the staff of the Cornell Lab Animal Services and CARE programs for excellent animal care. This work was supported by a National Institutes of Health grant R01 CA108773 to RSW; a Cornell University College of Veterinary Medicine Graduate Research Assistantship to GB; a Cornell University College of Veterinary Medicine Clinical Fellowship to KRH; and a National Center for Research Resources grant (S10RR023781) for instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R S Weiss.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balmus, G., Lim, P., Oswald, A. et al. HUS1 regulates in vivo responses to genotoxic chemotherapies. Oncogene 35, 662–669 (2016). https://doi.org/10.1038/onc.2015.118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.118

This article is cited by

Search

Quick links