Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Elevated levels of FOXA1 facilitate androgen receptor chromatin binding resulting in a CRPC-like phenotype

Abstract

Castration-resistant prostate cancer (CRPC) continues to pose a significant clinical challenge with new generation second-line hormonal therapies affording limited improvement in disease outcome. As the androgen receptor (AR) remains a critical driver in CRPC, understanding the determinants of its transcriptional activity is important for developing new AR-targeted therapies. FOXA1 is a key component of the AR transcriptional complex yet its role in prostate cancer progression and the relationship between AR and FOXA1 are not completely resolved. It is well established that FOXA1 levels are elevated in advanced prostate cancer and metastases. We mimicked these conditions by overexpressing FOXA1 in the androgen-responsive LNCaP prostate cancer cell line and observed a significant increase in AR genomic binding at novel regions that possess increased chromatin accessibility. High levels of FOXA1 resulted in increased proliferation at both sub-optimal and high 5α-dihydrotestosterone (DHT) concentrations. Immunohistochemical staining for FOXA1 in a clinical prostate cancer cohort revealed that high FOXA1 expression is associated with shorter time to biochemical recurrence after radical prostatectomy (hazard ratio (HR) 5.0, 95% confidence interval (CI) 1.2–21.1, P=0.028), positive surgical margins and higher stage disease at diagnosis. The gene expression program that results from FOXA1 overexpression is enriched for PTEN, Wnt and other pathways typically represented in CRPC gene signatures. Together, these results suggest that in an androgen-depleted state, elevated levels of FOXA1 enhance AR binding at genomic regions not normally occupied by AR, which in turn facilitates prostate cancer cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ADT:

androgen deprivation therapy

AR:

androgen receptor

ARBS:

androgen receptor binding site

ChIP:

chromatin immunoprecipitation

CRPC:

castrate-resistant prostate cancer

DEG:

differentially regulated genes

DHT:

5α-dihydrotestosterone

RIME:

rapid immunoprecipitation of endogenous proteins.

References

  1. Siegel R, Naishadham D, Jernal A . Cancer Statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    Article  Google Scholar 

  2. Scher HI, Buchanan G, Gerald W, Butler LM, Tilley WD . Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocr Relat Cancer 2004; 11: 459–476.

    Article  CAS  Google Scholar 

  3. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364: 1995–2005.

    Article  CAS  Google Scholar 

  4. Scher HI, Fizazi K, Saad F, Taplin M-E, Sternberg CN, Miller K et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367: 1187–1197.

    Article  CAS  Google Scholar 

  5. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10: 33–39.

    Article  Google Scholar 

  6. Taplin M-E, Balk SP . Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J Cell Biochem 2004; 91: 483–490.

    Article  CAS  Google Scholar 

  7. Waltering KK, Urbanucci A, Visakorpi T . Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol Cell Endocrinol 2012; 360: 38–43.

    Article  CAS  Google Scholar 

  8. Li Y, Alsagabi M, Fan D, Bova GS, Tewfik AH, Dehm SM . Intragenic rearrangements and altered RNA splicing of androgen receptor in a cell-based model of prostate cancer progression. Cancer Res 2011; 71: 2108–2117.

    Article  CAS  Google Scholar 

  9. Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM . Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 2007; 120: 719–733.

    Article  CAS  Google Scholar 

  10. Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 2011; 474: 390–394.

    Article  CAS  Google Scholar 

  11. Gao N, Zhang J, Rao MA, Case TC, Mirosevich J, Wang Y et al. The Role of hepatocyte nuclear factor-3a (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol 2003; 17: 1484–1507.

    Article  CAS  Google Scholar 

  12. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J et al. Genome-wide analysis of estrogen receptor binding sites. Nat Genet 2006; 38: 1289–1297.

    Article  CAS  Google Scholar 

  13. Clarke CL, Graham JD . Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes. PLoS One 2012; 7: e35859.

    Article  CAS  Google Scholar 

  14. Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 2008; 132: 958–970.

    Article  CAS  Google Scholar 

  15. Gerhardt J, Montani M, Wild P, Beer M, Huber F, Hermanns T et al. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castrate-resistant prostate cancer. Am J Pathol 2012; 180: 848–861.

    Article  CAS  Google Scholar 

  16. Gao N, Ishii K, Mirosevich J, Kuwajima S, Oppenheimer SR, Roberts RL et al. Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial cell maturation. Development 2005; 132: 3431–3443.

    Article  CAS  Google Scholar 

  17. Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 2007; 27: 380–392.

    Article  Google Scholar 

  18. Jia L, Berman BP, Jariwala U, Yan X, Cogan JP, Walters A et al. Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity. PLoS ONE 2008; 3: e3645.

    Article  Google Scholar 

  19. Jin HJ, Zhao JC, Ogden I, Bergan RC, Yu J . Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res 2013; 73: 3725–3736.

    Article  CAS  Google Scholar 

  20. Imamura Y, Sakamoto S, Endo T, Utsumi T, Fuse M, Suyama T et al. FOXA1 promotes tumor progression in prostate cancer via the insulin-like growth factor binding protein 3 pathway. PLoS One 2012; 7: e42456.

    Article  CAS  Google Scholar 

  21. Sahu B, Laakso M, Ovaska K, Mirtti T, Lundin J, Rannikko A et al. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J 2011; 30: 3962–3976.

    Article  CAS  Google Scholar 

  22. Jain RK, Mehta RJ, Nakshatri H, Idrees MT, Badve SS . High-level expression of forkhead-box protein A1 in metastatic prostate cancer. Histopathology 2011; 58: 766–772.

    Article  Google Scholar 

  23. Decker KF, Zheng D, He Y, Bowman T, Edwards JR, Jia L . Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions. Nucleic Acids Res 2012; 40: 10765–10779.

    Article  CAS  Google Scholar 

  24. Sharma Naomi L, Massie Charlie E, Ramos-Montoya A, Zecchini V, Scott HE, Lamb Alastair D et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 2013; 23: 35–47.

    Article  CAS  Google Scholar 

  25. Zhang C, Wang L, Wu D, Chen H, Chen Z, Thomas-Ahner JM et al. Definition of a FoxA1 cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer. Cancer Res 2011; 71: 6738–6748.

    Article  CAS  Google Scholar 

  26. Grasso CS, Wu Y-M, Robinson DR, Cao X, Dhanasekaran SM, Khan AP et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: 239–243.

    Article  CAS  Google Scholar 

  27. Robinson JLL, MacArthur S, Ross-Innes CS, Tilley WD, Neal DE, Mills IG et al. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J 2011; 30: 3019–3027.

    Article  CAS  Google Scholar 

  28. Mohammed H, D Santos C, Serandour Aurelien A, Ali HR, Brown Gordon D, Atkins A et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep 2013; 3: 342–349.

    Article  CAS  Google Scholar 

  29. Mahajan MC, Narlikar GJ, Boyapaty G, Kingston RE, Weissman SM . Heterogeneous nuclear ribonucleoprotein C1/C2, MeCP1, and SWI/SNF form a chromatin remodeling complex at the Î2-globin locus control region. Proc Natl Acad Sci USA 2005; 102: 15012–15017.

    Article  CAS  Google Scholar 

  30. Kikuchi M, Okumura F, Tsukiyama T, Watanabe M, Miyajima N, Tanaka J et al. TRIM24 mediates ligand-dependent activation of androgen receptor and is repressed by a bromodomain-containing protein, BRD7, in prostate cancer cells. Biochim Biophys Acta 2009; 1793: 1828–1836.

    Article  CAS  Google Scholar 

  31. Jung C, Kim RS, Zhang HJ, Lee SJ, Jeng MH . HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling. Cancer Res 2004; 64: 9185–9192.

    Article  CAS  Google Scholar 

  32. Liao G, Chen LY, Zhang A, Godavarthy A, Xia F, Ghosh JC et al. Regulation of androgen receptor activity by the nuclear receptor corepressor SMRT. J Biol Chem 2003; 278: 5052–5061.

    Article  CAS  Google Scholar 

  33. Hodgson MC, Astapova I, Cheng S, Lee LJ, Verhoeven MC, Choi E et al. The androgen receptor recruits nuclear receptor CoRepressor (N-CoR) in the presence of mifepristone via its N and C termini revealing a novel molecular mechanism for androgen receptor antagonists. J Biol Chem 2005; 280: 6511–6519.

    Article  CAS  Google Scholar 

  34. Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 2009; 138: 245–256.

    Article  CAS  Google Scholar 

  35. Deutsch L, Wrage M, Koops S, Glatzel M, Uzunoglu FG, Kutup A et al. Opposite roles of FOXA1 and NKX2-1 in lung cancer progression. Genes Chromosomes Cancer 2012; 51: 618–629.

    Article  CAS  Google Scholar 

  36. Nucera C, Eeckhoute J, Finn S, Carroll JS, Ligon AH, Priolo C et al. FOXA1 is a potential oncogene in anaplastic thyroid carcinoma. Clin Cancer Res 2009; 15: 3680–3689.

    Article  CAS  Google Scholar 

  37. Lin L, Miller CT, Contreras JI, Prescott MS, Dagenais SL, Wu R et al. The hepatocyte nuclear factor 3a Gene, HNF3a (FOXA1), on chromosome band 14q13 is amplified and overexpressed in esophageal and lung adenocarcinomas. Cancer Res 2002; 62: 5273–5279.

    CAS  PubMed  Google Scholar 

  38. Wang L, Qin H, Li L, Feng F, Ji P, Zhang J et al. Forkhead-box A1 transcription factor is a novel adverse prognosis marker in human glioma. J Clin Neurosci 2013; 20: 654–658.

    Article  Google Scholar 

  39. Sahu B, Laakso M, Pihlajamaa P, Ovaska K, Sinielnikov I, Hautaniemi S et al. FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer Res 2013; 73: 1570–1580.

    Article  CAS  Google Scholar 

  40. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 2005; 8: 393–406.

    Article  CAS  Google Scholar 

  41. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat J-P et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 2012; 44: 685–689.

    Article  CAS  Google Scholar 

  42. Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS . FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 2011; 43: 27–33.

    Article  CAS  Google Scholar 

  43. Schmidt D, Wilson MD, Spyrou C, Brown GD, Hadfield J, Odom DT . ChIP-seq: Using high-throughput sequencing to discover protein:DNA interactions. Methods 2009; 48: 240–248.

    Article  CAS  Google Scholar 

  44. ENCODE, Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA et al. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

    Article  Google Scholar 

  45. Ross-Innes CS, Stark R, Holmes KA, Schmidt D, Spyrou C, Russell R et al. Cooperative interaction between retinoic acid receptor-α and estrogen receptor in breast cancer. Genes Dev 2010; 24: 171–182.

    Article  CAS  Google Scholar 

  46. Machanick P, Bailey TL . MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 2011; 27: 1696–1697.

    Article  CAS  Google Scholar 

  47. Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 2012; 481: 389–393.

    Article  CAS  Google Scholar 

  48. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  49. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 2009; 37 (Suppl 1): D412–D416.

    Article  CAS  Google Scholar 

  50. Cairns JM, Dunning MJ, Ritchie ME, Russell R, Lynch AG . BASH: a tool for managing BeadArray spatial artefacts. Bioinformatics (Oxford, England) 2008; 24: 2921–2922.

    Article  CAS  Google Scholar 

  51. Dunning MJ, Smith ML, Ritchie ME, Tavare S . beadarray: R classes and methods for Illumina bead-based data. Bioinformatics 2007; 23: 2183–2184.

    Article  CAS  Google Scholar 

  52. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80–R.16.

    Article  Google Scholar 

  53. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 1995; 57: 289–300.

    Google Scholar 

  54. Whitaker HC, Kote-Jarai Z, Ross-Adams H, Warren AY, Burge J, George A et al. The rs10993994 risk allele for prostate cancer results in clinically relevant changes in microseminoprotein-beta expression in tissue and urine. PLoS ONE 2010; 5: e13363.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the genomic, proteomic and histopathology core facilities at Cancer Research UK. We would like to acknowledge the support of The University of Cambridge, Cancer Research UK and Hutchison Whampoa Limited. We are grateful to study volunteers for their participation and staff at the Welcome Trust Clinical Research Facility, Addenbrooke’s Clinical Research Centre, Cambridge. WDT is supported by grants from the National Health and Medical Research Council of Australia (ID 627185), Cancer Australia (ID 627229) and the Prostate Cancer Foundation of Australia. TEH holds a Postdoctoral Fellowship Award from the US Department of Defense Breast Cancer Research Program (BCRP; #W81XWH-11-1-0592). JSC is supported by an ERC starting grant and an EMBO Young Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Carroll.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, J., Hickey, T., Warren, A. et al. Elevated levels of FOXA1 facilitate androgen receptor chromatin binding resulting in a CRPC-like phenotype. Oncogene 33, 5666–5674 (2014). https://doi.org/10.1038/onc.2013.508

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.508

Keywords

This article is cited by

Search

Quick links