Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dynamic interaction between TAL1 oncoprotein and LSD1 regulates TAL1 function in hematopoiesis and leukemogenesis

Abstract

TAL1/SCL is a hematopoietic-specific oncogene and its activity is regulated by associated transcriptional co-activators and corepressors. Dysregulation of TAL1 activity has been associated with T-cell leukemogenesis. However, it remains unclear how the interactions between TAL1 and corepressors versus co-activators are properly regulated. Here, we reported that protein kinase A (PKA)-mediated phosphorylation regulates TAL1 interaction with the lysine-specific demethylase (LSD1) that removes methyl group from methylated Lys 4 on histone H3 tails. Phosphorylation of serine 172 in TAL1 specifically destabilizes the TAL1–LSD1 interaction leading to promoter H3K4 hypermethylation and activation of target genes that have been suppressed in normal and malignant hematopoiesis. Knockdown of TAL1 or LSD1 led to a derepression of the TAL1 target genes in T-cell acute lymphoblast leukemia (T-ALL) Jurkat cells, which is accompanied by elevating promoter H3K4 methylation. Similarly, treatment of PKA activator forskolin resulted in derepression of target genes by reducing its interaction with LSD1 while PKA inhibitor H89 represses them by suppressing H3K4 methylation levels. Consistent with the dual roles of TAL1 in transcription, TAL1-associated LSD1 is decreased while recruitment of hSET1 is increased at the TAL1 targets during erythroid differentiation. This process is accompanied by a dramatic increase in H3K4 methylation. Thus, our data revealed a novel interplay between PKA phosphorylation and TAL1-mediated epigenetic regulation that regulates hematopoietic transcription and differentiation programs during hematopoiesis and leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Porcher C, Swat W, Rockwell K, Fujiwara Y, Alt FW, Orkin SH . The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 1996; 86: 47–57.

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez MJ, Bockamp EO, Miller J, Gambardella L, Green AR . Selective rescue of early haematopoietic progenitors in Scl(-/-) mice by expressing Scl under the control of a stem cell enhancer. Development 2001; 128: 4815–4827.

    CAS  PubMed  Google Scholar 

  3. Robb L, Elwood NJ, Elefanty AG, Kontgen F, Li R, Barnett LD et al. The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J 1996; 15: 4123–4129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen Q, Cheng JT, Tasi LH, Schneider N, Buchanan G, Carroll A et al. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J 1990; 9: 415–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robb L, Begley CG . The SCL/TAL1 gene: roles in normal and malignant haematopoiesis. Bioessays 1997; 19: 607–613.

    Article  CAS  PubMed  Google Scholar 

  6. Orkin SH . Hematopoiesis: how does it happen? Curr Opin Cell Biol 1995; 7: 870–877.

    Article  CAS  PubMed  Google Scholar 

  7. Cantor AB, Orkin SH . Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 2002; 21: 3368–3376.

    Article  CAS  PubMed  Google Scholar 

  8. Kassouf MT, Hughes JR, Taylor S, McGowan SJ, Soneji S, Green AL et al. Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells. Genome Res 2010; 20: 1064–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tripic T, Deng W, Cheng Y, Zhang Y, Vakoc CR, Gregory GD et al. SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood 2009; 113: 2191–2201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang S, Brandt SJ . mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor. Mol Cell Biol 2000; 20: 2248–2259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang S, Qiu Y, Shi Y, Xu Z, Brandt SJ . P/CAF-mediated acetylation regulates the function of the basic helix-loop-helix transcription factor TAL1/SCL. EMBO J 2000; 19: 6792–6803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang S, Qiu Y, Stein RW, Brandt SJ . p300 functions as a transcriptional coactivator for the TAL1/SCL oncoprotein. Oncogene 1999; 18: 4958–4967.

    Article  CAS  PubMed  Google Scholar 

  13. Hu X, Li X, Valverde K, Fu X, Noguchi C, Qiu Y et al. LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis. Proc Natl Acad Sci USA 2009; 106: 10141–10146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schuh AH, Tipping AJ, Clark AJ, Hamlett I, Guyot B, Iborra FJ et al. ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Mol Cell Biol 2005; 25: 10235–10250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goardon N, Lambert JA, Rodriguez P, Nissaire P, Herblot S, Thibault P et al. ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J 2006; 25: 357–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cai Y, Xu Z, Xie J, Ham AJ, Koury MJ, Hiebert SW et al. Eto2/MTG16 and MTGR1 are heteromeric corepressors of the TAL1/SCL transcription factor in murine erythroid progenitors. Biochem Biophys Res Commun 2009; 390: 295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palamarchuk A, Efanov A, Maximov V, Aqeilan RI, Croce CM, Pekarsky Y . Akt phosphorylates Tal1 oncoprotein and inhibits its repressor activity. Cancer Res 2005; 65: 4515–4519.

    Article  CAS  PubMed  Google Scholar 

  18. Prasad KS, Brandt SJ . Target-dependent effect of phosphorylation on the DNA binding activity of the TAL1/SCL oncoprotein. J Biol Chem 1997; 272: 11457–11462.

    Article  CAS  PubMed  Google Scholar 

  19. Prasad KS, Jordan JE, Koury MJ, Bondurant MC, Brandt SJ . Erythropoietin stimulates transcription of the TAL1/SCL gene and phosphorylation of its protein products. J Biol Chem 1995; 270: 11603–11611.

    Article  CAS  PubMed  Google Scholar 

  20. Wadman IA, Hsu HL, Cobb MH, Baer R . The MAP kinase phosphorylation site of TAL1 occurs within a transcriptional activation domain. Oncogene 1994; 9: 3713–3716.

    CAS  PubMed  Google Scholar 

  21. Hu X, Ybarra R, Qiu Y, Bungert J, Huang S . Transcriptional regulation by TAL1: a link between epigenetic modifications and erythropoiesis. Epigenetics 2009; 4: 357–361.

    Article  CAS  PubMed  Google Scholar 

  22. Bash RO, Hall S, Timmons CF, Crist WM, Amylon M, Smith RG et al. Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A pediatric oncology group study. Blood 1995; 86: 666–676.

    CAS  PubMed  Google Scholar 

  23. Palomero T, Odom DT, O’Neil J, Ferrando AA, Margolin A, Neuberg DS et al. Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia. Blood 2006; 108: 986–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Larson RC, Lavenir I, Larson TA, Baer R, Warren AJ, Wadman I et al. Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J 1996; 15: 1021–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Condorelli GL, Facchiano F, Valtieri M, Proietti E, Vitelli L, Lulli V et al. T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice. Cancer Res 1996; 56: 5113–5119.

    CAS  PubMed  Google Scholar 

  26. Shank-Calvo JA, Draheim K, Bhasin M, Kelliher MA . p16Ink4a or p19Arf loss contributes to Tal1-induced leukemogenesis in mice. Oncogene 2006; 25: 3023–3031.

    Article  CAS  PubMed  Google Scholar 

  27. O’Neil J, Shank J, Cusson N, Murre C, Kelliher M . TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 2004; 5: 587–596.

    Article  PubMed  Google Scholar 

  28. Herblot S, Steff AM, Hugo P, Aplan PD, Hoang T . SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol 2000; 1: 138–144.

    Article  CAS  PubMed  Google Scholar 

  29. Dey S, Curtis DJ, Jane SM, Brandt SJ . The TAL1/SCL transcription factor regulates cell cycle progression and proliferation in differentiating murine bone marrow monocyte precursors. Mol Cell Biol 2010; 30: 2181–2192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lacombe J, Herblot S, Rojas-Sutterlin S, Haman A, Barakat S, Iscove NN et al. Scl regulates the quiescence and the long-term competence of hematopoietic stem cells. Blood 2010; 115: 792–803.

    Article  CAS  PubMed  Google Scholar 

  31. Hansson A, Manetopoulos C, Jonsson JI, Axelson H . The basic helix-loop-helix transcription factor TAL1/SCL inhibits the expression of the p16INK4A and pTalpha genes. Biochem Biophys Res Commun 2003; 312: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  32. Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 2009; 4: 80–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007; 448: 553–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125: 315–326.

    Article  CAS  PubMed  Google Scholar 

  35. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119: 941–953.

    Article  CAS  PubMed  Google Scholar 

  36. Lee MG, Wynder C, Cooch N, Shiekhattar R . An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 2005; 437: 432–435.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 2009; 138: 660–672.

    Article  CAS  PubMed  Google Scholar 

  38. Lan F, Nottke AC, Shi Y . Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol 2008; 20: 316–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R . Functional interplay between histone demethylase and deacetylase enzymes. Mol Cell Biol 2006; 26: 6395–6402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scoumanne A, Chen X . The lysine-specific demethylase 1 is required for cell proliferation in both p53-dependent and -independent manners. J Biol Chem 2007; 282: 15471–15475.

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 2009; 41: 125–129.

    Article  CAS  PubMed  Google Scholar 

  42. Saleque S, Kim J, Rooke HM, Orkin SH . Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell 2007; 27: 562–572.

    Article  CAS  PubMed  Google Scholar 

  43. Aplan PD, Lombardi DP, Ginsberg AM, Cossman J, Bertness VL, Kirsch IR . Disruption of the human SCL locus by ″illegitimate″ V-(D)-J recombinase activity. Science 1990; 250: 1426–1429.

    Article  CAS  PubMed  Google Scholar 

  44. Begley CG, Green AR . The SCL gene: from case report to critical hematopoietic regulator. Blood 1999; 93: 2760–2770.

    CAS  PubMed  Google Scholar 

  45. Chen Q, Yang CY, Tsan JT, Xia Y, Ragab AH, Peiper SC et al. Coding sequences of the tal-1 gene are disrupted by chromosome translocation in human T cell leukemia. J Exp Med 1990; 172: 1403–1408.

    Article  CAS  PubMed  Google Scholar 

  46. Tremblay M, Herblot S, Lecuyer E, Hoang T . Regulation of pT alpha gene expression by a dosage of E2A, HEB, and SCL. J Biol Chem 2003; 278: 12680–12687.

    Article  CAS  PubMed  Google Scholar 

  47. Izraeli S . Leukaemia – a developmental perspective. Br J Haematol 2004; 126: 3–10.

    Article  CAS  PubMed  Google Scholar 

  48. Palii CG, Perez-Iratxeta C, Yao Z, Cao Y, Dai F, Davison J et al. Differential genomic targeting of the transcription factor TAL1 in alternate haematopoietic lineages. EMBO J 2011; 30: 494–509.

    Article  CAS  PubMed  Google Scholar 

  49. Linggi BE, Brandt SJ, Sun ZW, Hiebert SW . Translating the histone code into leukemia. J Cell Biochem 2005; 96: 938–950.

    Article  CAS  PubMed  Google Scholar 

  50. Martinez MC, Larbret F, Zobairi F, Coulombe J, Debili N, Vainchenker W et al. Transfer of differentiation signal by membrane microvesicles harboring hedgehog morphogens. Blood 2006; 108: 3012–3020.

    Article  CAS  PubMed  Google Scholar 

  51. Demers C, Chaturvedi CP, Ranish JA, Juban G, Lai P, Morle F et al. Activator-mediated recruitment of the MLL2 methyltransferase complex to the beta-globin locus. Mol Cell 2007; 27: 573–584 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH . GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci USA 2003; 100: 8811–8816 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Laat W, Grosveld F . Spatial organization of gene expression: the active chromatin hub. Chromosome Res 2003; 11: 447–459 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  54. Hsu PY, Hsu HK, Singer GA, Yan PS, Rodriguez BA, Liu JC et al. Estrogen-mediated epigenetic repression of large chromosomal regions through DNA looping. Genome Res 2010; 20: 733–744 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu Q, Kwon YS, Nunez E, Cardamone MD, Hutt KR, Ohgi KA et al. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci USA 2008; 105: 19199–19204 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kusy S, Gerby B, Goardon N, Gault N, Ferri F, Gerard D et al. NKX3.1 is a direct TAL1 target gene that mediates proliferation of TAL1-expressing human T cell acute lymphoblastic leukemia. J Exp Med 2010; 207: 2141–2156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li X, Hu X, Patel B, Zhou Z, Liang S, Ybarra R et al. H4R3 methylation facilitates beta-globin transcription by regulating histone acetyltransferase binding and H3 acetylation. Blood 2010; 115: 2028–2037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Song SH, Hou C, Dean A . A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol Cell 2007; 28: 810–822 [Research Support, N.I.H., Intramural].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129: 823–837.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Huang laboratory for their suggestions and comments. This work was supported by grants from the National Institute of Health (SH, R01HL090589, R01HL091929 and R01HL091929-01A1S1-the ARRA Administrative supplement; YQ, R01HL095674). BP is supported by NIH T32 training grant (5T32-CA9126-34). KZ is supported by the Intramural Research programs, National Heart Lung Blood Institute and National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Deng, C., Hu, X. et al. Dynamic interaction between TAL1 oncoprotein and LSD1 regulates TAL1 function in hematopoiesis and leukemogenesis. Oncogene 31, 5007–5018 (2012). https://doi.org/10.1038/onc.2012.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.8

Keywords

Search

Quick links