Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer

Abstract

Upregulation of lipogenesis is a hallmark of cancer and blocking the lipogenic pathway is known to cause tumor cell death by apoptosis. However, the exact role of lipogenesis in tumor initiation is as yet poorly understood. We examined the expression profile of key lipogenic genes in clinical samples of ductal carcinoma in situ (DCIS) of breast cancer and found that these genes were significantly upregulated in DCIS. We also isolated cancer stem-like cells (CSCs) from DCIS.com cell line using cell surface markers (CS24CD44+ESA+) and found that this cell population has significantly higher tumor-initiating ability to generate DCIS compared with the non-stem-like population. Furthermore, the CSCs showed significantly higher level of expression of all lipogenic genes than the counterpart population from non-tumorigenic breast cancer cell line, MCF10A. Importantly, ectopic expression of SREBP1, the master regulator of lipogenic genes, in MCF10A significantly enhanced lipogenesis in stem-like cells and promoted cell growth as well as mammosphere formation. Moreover, SREBP1 expression significantly increased the ability of cell survival of CSCs from MCF10AT, another cell line that is capable of generating DCIS, in mouse and in cell culture. These results indicate that upregulation of lipogenesis is a pre-requisite for DCIS formation by endowing the ability of cell survival. We have also shown that resveratrol was capable of blocking the lipogenic gene expression in CSCs and significantly suppressed their ability to generate DCIS in animals, which provides us with a strong rationale to use this agent for chemoprevention against DCIS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Barnes NL, Ooi JL, Yarnold JR, Bundred NJ . Ductal carcinoma in situ of the breast. BMJ 2012; 344: e797.

    Article  PubMed  Google Scholar 

  2. Porter DA, Krop IE, Nasser S, Sgroi D, Kaelin CM, Marks JR et al. A SAGE (serial analysis of gene expression) view of breast tumor progression. Cancer Res 61: 5697–5702 2001.

    CAS  PubMed  Google Scholar 

  3. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003; 100: 5974–5979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Menendez JA, Lupu R . Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007; 7: 763–777.

    Article  CAS  PubMed  Google Scholar 

  5. Swinnen JV, Brusselmans K, Verhoeven G . Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 2006; 9: 358–365.

    Article  CAS  PubMed  Google Scholar 

  6. Horton JD, Goldstein JL, Brown MS . SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109: 1125–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rashid A, Pizer ES, Moga M et al. Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am J Pathol 1997; 150: 201–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP . Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin Cancer Res 1997; 3: 2115–2120.

    CAS  PubMed  Google Scholar 

  9. Pizer ES, Chrest FJ, Di Giuseppe JA, Han WF . Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res 1998; 58: 4611–4615.

    CAS  PubMed  Google Scholar 

  10. Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, Hosobe S et al. Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res 2006; 66: 5934–5940.

    Article  CAS  PubMed  Google Scholar 

  11. Pandey PR, Okuda H, Watabe M, Pai SK, Liu W, Kobayashi A et al. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat 2011; 130: 387–398.

    Article  CAS  PubMed  Google Scholar 

  12. Pandey PR, Liu W, Xing F, Fukuda K, Watabe K . Anti-cancer drugs targeting fatty acid synthase (FAS). Recent Pat Anticancer Drug Discov 2012; 7: 185–197.

    Article  CAS  PubMed  Google Scholar 

  13. Liu W, Furuta E, Shindo K, Watabe M, Xing F, Pandey PR et al. Cacalol, a natural sesquiterpene, induces apoptosis in breast cancer cells by modulating Akt-SREBP-FAS signaling pathway. Breast Cancer Res Treat 2011; 128: 57–68.

    Article  CAS  PubMed  Google Scholar 

  14. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heppner GH, Wolman SR . MCF-10AT: a model for human breast cancer development. Breast J 1999; 5: 122–129.

    Article  PubMed  Google Scholar 

  16. Dawson PJ, Wolman SR, Tait L, Heppner GH, Miller FR . MCF10AT: a model for the evolution of cancer from proliferative breast disease. Am J Pathol 1996; 148: 313–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller FR, Soule HD, Tait L, Pauley RJ, Wolman SR, Dawson PJ et al. Xenograft model of progressive human proliferative breast disease. J Natl Cancer Inst 1993; 85: 1725–1732.

    Article  CAS  PubMed  Google Scholar 

  18. Shimano H . Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 2001; 40: 439–452.

    Article  CAS  PubMed  Google Scholar 

  19. Brown MS, Goldstein JL . The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89: 331–340.

    Article  CAS  PubMed  Google Scholar 

  20. Yamashita T, Honda M, Takatori H, Nishino R, Minato H, Takamura H et al. Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol 2009; 50: 100–110.

    Article  CAS  PubMed  Google Scholar 

  21. Huang WC, Li X, Liu J, Lin J, Chung LW . Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol Cancer Res 2012; 10: 133–142.

    Article  CAS  PubMed  Google Scholar 

  22. Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo YY et al. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 2008; 68: 1003–1011.

    Article  CAS  PubMed  Google Scholar 

  23. Damonte P, Hodgson JG, Chen JQ, Young LJ, Cardiff RD, Borowsky AD . Mammary carcinoma behavior is programmed in the precancer stem cell. Breast Cancer Res 2008; 10: R50.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Menendez JA, Lupu R . Oncogenic properties of the endogenous fatty acid metabolism: Molecular pathology of fatty acid synthase in cancer cells. Curr Opin Clin Nutr Metab Care 2006; 9: 346–357.

    Article  CAS  PubMed  Google Scholar 

  25. Esslimani-Sahla M, Thezenas S, Siminy-Lafontaine J, Kramar A, Lavaill R, Chalbos D et al. Increased expression of fatty acid synthase and progesterone receptor in early steps of human mammary carcinogenesis. Int J Cancer 2007; 120: 224–229.

    Article  CAS  PubMed  Google Scholar 

  26. Piyathilake CJ, Frost AR, Manne U, Bell WC, Weiss H, Heimburger DC et al. The expression of fatty acid synthase (FASE) is an early event in the development and progression of squamous cell carcinoma of the lung. Hum Pathol 2000; 31: 1068–1073.

    Article  CAS  PubMed  Google Scholar 

  27. Baron A, Migita T, Tang D, Loda M . Fatty acid synthase: a metabolic oncogene in prostate cancer? J Cell Biochem 2004; 91: 47–53.

    Article  CAS  PubMed  Google Scholar 

  28. Migita T, Ruiz S, Fornari A, Fiorentino M, Priolo C, Zadra G et al. Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J Natl Cancer Inst 2009; 101: 519–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alberola-Ila J, Hernandez-Hoyos G . The Ras/MAPK cascade and the control of positive selection. Immunol Rev 2003; 191: 79–96.

    Article  CAS  PubMed  Google Scholar 

  30. Ramjaun AR, Downward J . Ras and phosphoinositide 3-kinase: partners in development and tumorigenesis. Cell Cycle 2007; 6: 2902–2905.

    Article  CAS  PubMed  Google Scholar 

  31. McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE et al. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 2006; 46: 249–279.

    Article  CAS  PubMed  Google Scholar 

  32. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI (3) K and PKB. Nature 1997; 385: 544–548.

    Article  CAS  PubMed  Google Scholar 

  33. Carón RW, Yacoub A, Mitchell C, Zhu X, Hong Y, Sasazuki T et al. Radiation-stimulated ERK1/2 and JNK1/2 signaling can promote cell cycle progression in human colon cancer cells. Cell Cycle 2005; 4: 456–464.

    Article  PubMed  Google Scholar 

  34. Vazquez-Martin A, Colomer R, Brunet J, Lupu R, Menendez JA . Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells. Cell prolif 2008; 41: 59–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Valverde AM, Navarro P, Benito M, Lorenzo M . H-ras induces glucose uptake in brown adipocytes in an insulin- and phosphatidylinositol 3-kinase-independent manner. Exp Cell Res 1998; 243: 274–281.

    Article  CAS  PubMed  Google Scholar 

  36. Guillet-Deniau I, Pichard AL, Koné A, Esnous C, Nieruchalski M, Girard J et al. Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-binding-protein-1c-dependent pathway. J Cell Sci 2004; 117: 1937–1944.

    Article  CAS  PubMed  Google Scholar 

  37. Uttarwar L, Gao B, Ingram AJ, Krepinsky JC . SREBP-1 activation by glucose mediates TGF-β upregulation in mesangial cells. Am J Physiol Renal Physiol 2012; 302: 329–341.

    Article  Google Scholar 

  38. Janes PW, Daly RJ, deFazio A, Sutherland RL . Activation of the Ras signaling pathway in human breast cancer cells overexpressing erbB-2. Oncogene 1994; 9: 3601–3608.

    CAS  PubMed  Google Scholar 

  39. Von Lintig FC, Dreilinger AD, Varki NM, Wallace AM, Casteel DE, Boss GR . Ras activation in human breast cancer. Breast Cancer Res Treat 2000; 62: 51–62.

    Article  CAS  PubMed  Google Scholar 

  40. Lee CM, Shrieve DC, Zempolich KA, Lee RJ, Hammond E, Handrahan DL et al. Correlation between human epidermal growth factor receptor family (EGFR, HER2, HER3, HER4), phosphorylated Akt (P-Akt), and clinical outcomes after radiation therapy in carcinoma of the cervix. Gynecol Oncol 2005; 99: 415–421.

    Article  CAS  PubMed  Google Scholar 

  41. Chuthapisith S, Eremin J, El-Sheemey M, Eremin O . Breast cancer chemoresistance: emerging importance of cancer stem cells. Surg Oncol 2010; 19: 27–32.

    Article  PubMed  Google Scholar 

  42. Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, Van Buren G et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res 2009; 69: 1951–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diehn M, Clarke MF . Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J Natl Cancer Inst 2006; 98: 1755–1757.

    Article  PubMed  Google Scholar 

  44. Gu G, Yuan J, Wills M, Kasper S . Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 2007; 67: 4807–4815.

    Article  CAS  PubMed  Google Scholar 

  45. Allan AL, Vantyghem SA, Tuck AB, Chambers AF . Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 2007; 26: 87–98.

    Article  Google Scholar 

  46. Okuda H, Kobayashi A, Xia B, Watabe M, Pai SK, Hirota S et al. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res 2012; 72: 537–547.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (Grants R01CA124650, R01CA129000 and R01CA124650-04S1 to KW), the US Department of Defense (BC096982 to KW) and McElroy Foundation (to KW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Watabe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, P., Xing, F., Sharma, S. et al. Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer. Oncogene 32, 5111–5122 (2013). https://doi.org/10.1038/onc.2012.519

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.519

Keywords

This article is cited by

Search

Quick links