Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of autophagy and tumor growth in colon cancer by miR-502

Abstract

Autophagy is a catabolic process that allows cellular macromolecules to be broken down and recycled as metabolic precursors. The influence of non-coding microRNAs in autophagy has not been explored in colon cancer. In this study, we discover a novel mechanism of autophagy regulated by hsa-miR-502-5p (miR-502) by suppression of Rab1B, a critical mediator of autophagy. A number of other miR-502 suppressed mRNA targets (for example, dihydroorotate dehydrogenase) are also identified by microarray analysis. Ectopic expression of miR-502 inhibited autophagy, colon cancer cell growth and cell-cycle progression of colon cancer cells in vitro. miR-502 also inhibited in-vivo colon cancer growth in a mouse tumor xenografts model. In addition, the expression of miR-502 was regulated by p53 via a negative feedback regulatory mechanism. The expression of miR-502 was downregulated in colon cancer patient specimens compared with the paired normal control samples. These results suggest that miR-502 may function as a potential tumor suppressor and therefore be a novel candidate for developing miR-502-based therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alwan A . World Health Organization. Disaster Med Public Health Prep 2007; 1: 7–8.

    Article  PubMed  Google Scholar 

  2. Hegde SR, Sun W, Lynch JP . Systemic and targeted therapy for advanced colon cancer. Expert Rev Gastroenterol Hepatol 2008; 2: 135–149.

    Article  CAS  PubMed  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    Article  CAS  PubMed  Google Scholar 

  4. Wightman B, Ha I, Ruvkun G . Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75: 855–862.

    Article  CAS  PubMed  Google Scholar 

  5. Gunaratne PH, Creighton CJ, Watson M, Tennakoon JB . Large-scale integration of MicroRNA and gene expression data for identification of enriched microRNA-mRNA associations in biological systems. Methods Mol Biol 2010; 667: 297–315.

    Article  CAS  PubMed  Google Scholar 

  6. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM . bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003; 113: 25–36.

    Article  CAS  PubMed  Google Scholar 

  7. Chan JA, Krichevsky AM, Kosik KS . MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65: 6029–6033.

    Article  CAS  PubMed  Google Scholar 

  8. Ghodgaonkar MM, Shah RG, Kandan-Kulangara F, Affar EB, Qi HH, Wiemer E et al. Abrogation of DNA vector-based RNAi during apoptosis in mammalian cells due to caspase-mediated cleavage and inactivation of Dicer-1. Cell Death Differ 2009; 16: 858–868.

    Article  CAS  PubMed  Google Scholar 

  9. Hwang HW, Mendell JT . MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2006; 94: 776–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang F . Small RNAs in mammalian germline: Tiny for immortal. Differentiation 2010; 79: 141–146.

    Article  CAS  PubMed  Google Scholar 

  11. Navarro F, Lieberman J . Small RNAs guide hematopoietic cell differentiation and function. J Immunol 2010; 184: 5939–5947.

    Article  CAS  PubMed  Google Scholar 

  12. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67: 7713–7722.

    Article  CAS  PubMed  Google Scholar 

  14. Scott N, Sagar P, Stewart J, Blair GE, Dixon MF, Quirke P . p53 in colorectal cancer: clinicopathological correlation and prognostic significance. Br J Cancer 1991; 63: 317–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Crawford LV, Pim DC, Lamb P . The cellular protein p53 in human tumours. Mol Biol Med 1984; 2: 261–272.

    CAS  PubMed  Google Scholar 

  16. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319: 525–532.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 2000; 14: 981–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller SJ, Suthiphongchai T, Zambetti GP, Ewen ME . p53 binds selectively to the 5′ untranslated region of cdk4, an RNA element necessary and sufficient for transforming growth factor beta- and p53-mediated translational inhibition of cdk4. Mol Cell Biol 2000; 20: 8420–8431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fu L, Minden MD, Benchimol S . Translational regulation of human p53 gene expression. EMBO J 1996; 15: 4392–4401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xi Y, Shalgi R, Fodstad O, Pilpel Y, Ju J . Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res 2006; 12: 2014–2024.

    Article  CAS  PubMed  Google Scholar 

  21. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H . Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 2007; 104: 15472–15477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007; 26: 731–743.

    Article  CAS  PubMed  Google Scholar 

  25. Yamakuchi M, Ferlito M, Lowenstein CJ . miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 2008; 105: 13421–13426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song B, Wang Y, Kudo K, Gavin EJ, Xi Y, Ju J . miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin Cancer Res 2008; 14: 8080–8086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song B, Wang Y, Titmus MA, Botchkina G, Formentini A, Kornmann M et al. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer 2010; 9: 96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karaayvaz M, Pal T, Song B, Zhang C, Georgakopoulos P, Mehmood S et al. Prognostic Significance of miR-215 in Colon Cancer. Clin Colorectal Cancer 2011; 10: 340–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T et al. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 2008; 68: 10094–10104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN et al. Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res 2008; 68: 10105–10112.

    Article  CAS  PubMed  Google Scholar 

  31. Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J et al. Prognostic values of microRNAs in colorectal cancer. Biomark Insights 2006; 2: 113–121.

    PubMed  Google Scholar 

  32. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 2008; 10: 676–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tasdemir E, Maiuri MC, Orhon I, Kepp O, Morselli E, Criollo A et al. p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle 2008; 7: 3006–3011.

    Article  CAS  PubMed  Google Scholar 

  34. Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D'Amelio M, Djavaheri-Mergny M et al. A dual role of p53 in the control of autophagy. Autophagy 2008; 4: 810–814.

    Article  CAS  PubMed  Google Scholar 

  35. Scherz-Shouval R, Weidberg H, Gonen C, Wilder S, Elazar Z, Oren M . p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci USA 2010; 107: 18511–18516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eisenberg-Lerner A, Kimchi A . The paradox of autophagy and its implication in cancer etiology and therapy. Apoptosis 2009; 14: 376–391.

    Article  PubMed  Google Scholar 

  37. White E, DiPaola RS . The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 2009; 15: 5308–5316.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zoppino FC, Militello RD, Slavin I, Alvarez C, Colombo MI . Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 2010; 11: 1246–1261.

    Article  CAS  PubMed  Google Scholar 

  39. Plutner H, Cox AD, Pind S, Khosravi-Far R, Bourne JR, Schwaninger R et al. Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. J Cell Biol 1991; 115: 31–43.

    Article  CAS  PubMed  Google Scholar 

  40. Stenmark H . Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10: 513–525.

    Article  CAS  PubMed  Google Scholar 

  41. He H, Dai F, Yu L, She X, Zhao Y, Jiang J et al. Identification and characterization of nine novel human small GTPases showing variable expressions in liver cancer tissues. Gene Expr 2002; 10: 231–242.

    Article  CAS  PubMed  Google Scholar 

  42. Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q et al. Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 2004; 279: 53015–53022.

    Article  CAS  PubMed  Google Scholar 

  43. Baumann P, Mandl-Weber S, Volkl A, Adam C, Bumeder I, Oduncu F et al. Dihydroorotate dehydrogenase inhibitor A771726 (leflunomide) induces apoptosis and diminishes proliferation of multiple myeloma cells. Mol Cancer Ther 2009; 8: 366–375.

    Article  CAS  PubMed  Google Scholar 

  44. Shintani T, Klionsky DJ . Autophagy in health and disease: a double-edged sword. Science 2004; 306: 990–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006; 10: 51–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mathew R, Karantza-Wadsworth V, White E . Role of autophagy in cancer. Nat Rev Cancer 2007; 7: 961–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672–676.

    Article  CAS  PubMed  Google Scholar 

  48. Li J, Hou N, Faried A, Tsutsumi S, Kuwano H . Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer 2010; 46: 1900–1909.

    Article  CAS  PubMed  Google Scholar 

  49. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005; 25: 1025–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G . Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8: 741–752.

    Article  CAS  PubMed  Google Scholar 

  51. Hirst J, Bright NA, Rous B, Robinson MS . Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 1999; 10: 2787–2802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jung YS, Qian Y, Chen X . Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 2010; 22: 1003–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abbas T, Dutta A . p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009; 9: 400–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. White RM, Cech J, Ratanasirintrawoot S, Lin CY, Rahl PB, Burke CJ et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 2011; 471: 518–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Akao Y, Nakagawa Y, Naoe T . MicroRNA-143 and -145 in colon cancer. DNA Cell Biol 2007; 26: 311–320.

    Article  CAS  PubMed  Google Scholar 

  56. Michael MZ, O'Connor SM, van Holst Pellekaan NG, Young GP, James RJ . Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1: 882–891.

    CAS  PubMed  Google Scholar 

  57. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007; 72: 397–402.

    Article  CAS  PubMed  Google Scholar 

  58. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 2009; 106: 3207–3212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R . Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 2007; 282: 32582–32590.

    Article  CAS  PubMed  Google Scholar 

  60. Akao Y, Nakagawa Y, Iio A, Naoe T . Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells. Leuk Res 2009; 33: 1530–1538.

    Article  CAS  PubMed  Google Scholar 

  61. Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K et al. Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther 2010; 17: 398–408.

    Article  CAS  PubMed  Google Scholar 

  62. Ibrahim AF, Weirauch U, Thomas M, Grunweller A, Hartmann RK, Aigner A . MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 2011; 71: 5214–5224.

    Article  CAS  PubMed  Google Scholar 

  63. Shin S, Lee EM, Cha HJ, Bae S, Jung JH, Lee SM et al. MicroRNAs that respond to histone deacetylase inhibitor SAHA and p53 in HCT116 human colon carcinoma cells. Int J Oncol 2009; 35: 1343–1352.

    CAS  PubMed  Google Scholar 

  64. Shin S, Cha HJ, Lee EM, Jung JH, Lee SJ, Park IC et al. MicroRNAs are significantly influenced by p53 and radiation in HCT116 human colon carcinoma cells. Int J Oncol 2009; 34: 1645–1652.

    CAS  PubMed  Google Scholar 

  65. Zhou J, Zhou Y, Yin B, Hao W, Zhao L, Ju W et al. 5-Fluorouracil and oxaliplatin modify the expression profiles of microRNAs in human colon cancer cells in vitro. Oncol Rep 2010; 23: 121–128.

    CAS  PubMed  Google Scholar 

  66. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis 2008 Nat Genet 40: 43–50.

    Article  CAS  PubMed  Google Scholar 

  67. Tang X, Milyavsky M, Shats I, Erez N, Goldfinger N, Rotter V . Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene 2004; 23: 5759–5769.

    Article  CAS  PubMed  Google Scholar 

  68. Wang X, Wu X, Wang C, Zhang W, Ouyang Y, Yu Y et al. Transcriptional suppression of breast cancer resistance protein (BCRP) by wild-type p53 through the NF-kappaB pathway in MCF-7 cells. FEBS Lett 2010; 584: 3392–3397.

    Article  CAS  PubMed  Google Scholar 

  69. Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 2009; 28: 4065–4074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Krishan A . Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 1975; 66: 188–193.

    Article  CAS  PubMed  Google Scholar 

  71. Dressler LG, Seamer LC, Owens MA, Clark GM, McGuire WL . DNA flow cytometry and prognostic factors in 1331 frozen breast cancer specimens. Cancer 1988; 61: 420–427.

    Article  CAS  PubMed  Google Scholar 

  72. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010; 29: 1580–1587.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the critical review by Ms Sonya R Lorrain. We thank Dr Stella E Tsirka for technical support in animal experiments. This study was supported in part by Stony Brook University Translational Research Laboratory Start-up Fund (J Ju), R01CA155019 (J Ju) and R33CA147966 (J Ju).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Ju.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, H., Song, B., Xu, X. et al. Inhibition of autophagy and tumor growth in colon cancer by miR-502. Oncogene 32, 1570–1579 (2013). https://doi.org/10.1038/onc.2012.167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.167

Keywords

This article is cited by

Search

Quick links