Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The miR-99 family regulates the DNA damage response through its target SNF2H

Abstract

Chromatin remodeling factors are becoming known as crucial facilitators of recruitment of repair proteins to sites of DNA damage. Multiple chromatin remodeling protein complexes are now known to be required for efficient double strand break repair. In a screen for microRNAs (miRNAs) that modulate the DNA damage response, we discovered that expression of the miR-99 family of miRNAs correlates with radiation sensitivity. These miRNAs were also transiently induced following radiation. The miRNAs target the SWI/SNF chromatin remodeling factor SNF2H/SMARCA5, a component of the ACF1 complex. We found that by reducing levels of SNF2H, miR-99a and miR-100 reduced BRCA1 localization to sites of DNA damage. Introduction of the miR-99 family of miRNAs into cells reduced the rate and overall efficiency of repair by both homologous recombination and non-homologous end joining. Finally, induction of the miR-99 family following radiation prevents an increase in SNF2H expression and reduces the recruitment of BRCA1 to the sites of DNA damage following a second dose of radiation, reducing the efficiency of repair after multiple rounds of radiation, as used in fractionated radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. van Attikum H, Gasser SM . Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol 2009; 19: 207–217.

    Article  CAS  Google Scholar 

  2. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA et al. Genomic instability in mice lacking histone H2AX. Science 2002; 296: 922–927.

    Article  CAS  Google Scholar 

  3. van Attikum H, Gasser SM . The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 2005; 6: 757–765.

    Article  CAS  Google Scholar 

  4. van Attikum H, Fritsch O, Hohn B, Gasser SM . Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 2004; 119: 777–788.

    Article  CAS  Google Scholar 

  5. van Attikum H, Fritsch O, Gasser SM . Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J 2007; 26: 4113–4125.

    Article  CAS  Google Scholar 

  6. Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE et al. INO80 and [gamma]-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 2004; 119: 767–775.

    Article  CAS  Google Scholar 

  7. Tsukuda T, Fleming AB, Nickoloff JA, Osley MA . Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 2005; 438: 379–383.

    Article  CAS  Google Scholar 

  8. Lee H-S, Park J-H, Kim S-J, Kwon S-J, Kwon J . A cooperative activation loop among SWI/SNF, [gamma]-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J 2010; 29: 1434–1445.

    Article  CAS  Google Scholar 

  9. Jha S, Shibata E, Dutta A . Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage. Mol Cell Biol 2008 28: 2690–2700.

    Article  CAS  Google Scholar 

  10. Stewart GS, Wang B, Bignell CR, Taylor AMR, Elledge SJ . MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 2003; 421: 961–966.

    Article  CAS  Google Scholar 

  11. Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 2007; 131: 887–900.

    Article  CAS  Google Scholar 

  12. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, FdrD Sweeney et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin Ligase. Science 2007; 318: 1637–1640.

    Article  CAS  Google Scholar 

  13. Huen MSY, Grant R, Manke I, Minn K, Yu X, Yaffe MB et al. RNF8 Transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 2007; 131: 901–914.

    Article  CAS  Google Scholar 

  14. Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok R et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 2009; 136: 435–446.

    Article  CAS  Google Scholar 

  15. Roberts SA, Ramsden DA . Loading of the Nonhomologous End Joining Factor, Ku, on Protein-occluded DNA Ends. J Biol Chem 2007; 282: 10605–10613.

    Article  CAS  Google Scholar 

  16. Mladenov E, Iliakis G . Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res Fundam Mol Mech Mugag 2011; 711: 61–72.

    Article  CAS  Google Scholar 

  17. Larsen DH, Poinsignon C, Gudjonsson T, Dinant C, Payne MR, Hari FJ et al. The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage. J Cell Biol 2010; 190: 731–740.

    Article  CAS  Google Scholar 

  18. Lan L, Ui A, Nakajima S, Hatakeyama K, Hoshi M, Watanabe R et al. The ACF1 complex is required for DNA double-strand break repair in human cells. Mol Cell 2010; 40: 976–987.

    Article  CAS  Google Scholar 

  19. Nakamura K, Kato A, Kobayashi J, Yanagihara H, Sakamoto S, Oliveira DNP et al. Regulation of homologous recombination by rNF20-dependent H2B ubiquitination. Mol Cell 2011; 41: 515–528.

    Article  CAS  Google Scholar 

  20. Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C et al. miR-99 Family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res 2011; 71: 1313–1324.

    Article  CAS  Google Scholar 

  21. He L, Hannon GJ . MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004 5: 522–531.

    Article  CAS  Google Scholar 

  22. Dey BK, Gagan J, Dutta A . miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol 2011; 31: 203–214.

    Article  CAS  Google Scholar 

  23. Gagan J, Dey BK, Layer R, Yan Z, Dutta A . MICRORNA-378 targets the myogenic repressor myor during myoblast differentiation. J Biol Chem 2011; 22: 19432–19438.

    Google Scholar 

  24. Bruno IG, Karam R, Huang L, Bhardwaj A, Lou CH, Shum EY et al. Identification of a MicroRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol Cell 2011; 42: 500–510.

    Article  CAS  Google Scholar 

  25. Chen C-Z, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    Article  CAS  Google Scholar 

  26. Houbaviy HB, Murray MF, Sharp PA . Embryonic stem cell-specific MicroRNAs. Dev Cell 2003; 5: 351–358.

    Article  CAS  Google Scholar 

  27. Lee YS, Dutta A . MicroRNAs in cancer. Annu Rev Pathol 2009; 4: 199–227.

    Article  CAS  Google Scholar 

  28. Lee YS, Dutta A . The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007; 21: 1025–1030.

    Article  CAS  Google Scholar 

  29. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    Article  CAS  Google Scholar 

  30. Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly†influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    Article  CAS  Google Scholar 

  31. Marcu LG . Altered fractionation in radiotherapy: from radiobiological rationale to therapeutic gain. Cancer Treat Rev 2010; 36: 606–614.

    Article  Google Scholar 

  32. Skvortsova I, Skvortsov S, Stasyk T, Raju U, Popper B-A, Schiestl B et al. Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics 2008; 8: 4521–4533.

    Article  CAS  Google Scholar 

  33. Meng F, Henson R, Wehbe Ä, Janek H, Ghoshal K, Jacob ST et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133: 647–658.

    Article  CAS  Google Scholar 

  34. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 2009; 23: 1327–1337.

    Article  CAS  Google Scholar 

  35. Chan JA, Krichevsky AM, Kosik KS . MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65: 6029–6033.

    Article  CAS  Google Scholar 

  36. Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlynček M . Identification of MicroRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 2010; 223: 49–56.

    CAS  PubMed  Google Scholar 

  37. Ransburgh DJR, Chiba N, Ishioka C, Toland AE, Parvin JD . Identification of breast tumor mutations in BRCA1 That abolish its function in homologous DNA recombination. Cancer Res 2010; 70: 988–995.

    Article  CAS  Google Scholar 

  38. Pierce AJ, Johnson RD, Thompson LH, Jasin M . XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 1999; 13: 2633–2638.

    Article  CAS  Google Scholar 

  39. Golding SE, Morgan RN, Adams BR, Hawkins AJ, Povirk LF, Valerie K et al. and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther 2009; 8: 730–738.

    Article  CAS  Google Scholar 

  40. Doghman M, Wakil AE, Cardinaud B, Thomas E, Wang J, Zhao W et al. Regulation of insulin-like growth factor,ÄìMammalian target of rapamycin signaling by MicroRNA in childhood adrenocortical tumors. Cancer Res 2010; 70: 4666–4675.

    Article  CAS  Google Scholar 

  41. Hu H, Gatti RA . MicroRNAs: new players in the DNA damage response. J Mol Cell Biol 2011; 3: 151–158.

    Article  CAS  Google Scholar 

  42. Lal A, Pan Y, Navarro F, Dykxhoorn DM, Moreau L, Meire E et al. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 2009; 16: 492–498.

    Article  CAS  Google Scholar 

  43. Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko RJ et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res 2009; 69: 8157–8165.

    Article  CAS  Google Scholar 

  44. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134.

    Article  CAS  Google Scholar 

  45. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K . Modulation of microRNA processing by p53. Nature 2009; 460: 529–533.

    Article  CAS  Google Scholar 

  46. Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 2011; 41: 210–220.

    Article  CAS  Google Scholar 

  47. Golding SE, Rosenberg E, Valerie N, Hussaini I, Frigerio M, Cockcroft XF et al. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol Cancer Ther 2009; 8: 2894–2902.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AM was supported by DOD BCRP predoctoral traineeship BC073568. DS was supported by DOD PCRP predoctoral traineeship PC094499. This work was supported by P01CA104106 to AD. We thank members of the Dutta Laboratory for their help and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Dutta.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, A., Sun, D. & Dutta, A. The miR-99 family regulates the DNA damage response through its target SNF2H. Oncogene 32, 1164–1172 (2013). https://doi.org/10.1038/onc.2012.131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.131

Keywords

This article is cited by

Search

Quick links