Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PKCα phosphorylation of RhoGDI2 at Ser31 disrupts interactions with Rac1 and decreases GDI activity

Abstract

Rho family GTPases control a diverse range of cellular processes, and their deregulation has been implicated in human cancer. Guanine nucleotide dissociation inhibitors (GDIs) bind and sequester GTPases in the cytosol, restricting their actions. RhoGDI2 is a member of the GDI family that acts as a metastasis suppressor in a variety of cancer types; however, very little is known about the regulation of this protein. Here, we present a mechanism for inactivation of RhoGDI2 via protein kinase C (PKC) phosphorylation of Ser31 in a region that contacts GTPases. In cells, RhoGDI2 becomes rapidly phosphorylated at Ser31 in response to phorbol 12-myristate 13-acetate stimulation. Based on the effects of pharmacological inhibitors and knockdown by siRNA, we determine that conventional type PKCα is responsible for this phosphorylation. Phospho-mimetic S31E-RhoGDI2 exhibits reduced binding to Rac1 relative to wild type, with a concomitant failure to reduce levels of activated endogenous Rac1 or remove Rac1 from membranes. These results reveal a mechanism of downregulation of RhoGDI2 activity through PKC-mediated phosphorylation of Ser31. We hypothesize that this mechanism may serve to neutralize RhoGDI2 function in tumors that express RhoGDI2 and active PKCα.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Heasman SJ, Ridley AJ . Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9: 690–701.

    Article  CAS  PubMed  Google Scholar 

  2. Jaffe AB, Hall A . Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 2005; 21: 247–269.

    Article  CAS  PubMed  Google Scholar 

  3. Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res 2003; 9: 2632–2641.

    CAS  PubMed  Google Scholar 

  4. Pervaiz S, Cao J, Chao OSP, Chin YY, Clement MV . Activation of the RacGTPase inhibits apoptosis in human tumor cells. Oncogene 2001; 20: 6263–6268.

    Article  CAS  PubMed  Google Scholar 

  5. Vega FM, Ridley AJ . Rho GTPases in cancer cell biology. FEBS Lett 2008; 582: 2093–2101.

    Article  CAS  PubMed  Google Scholar 

  6. VanAelst L, DsouzaSchorey C . Rho GTPases and signaling networks. Genes Dev 1997; 11: 2295–2322.

    Article  CAS  Google Scholar 

  7. DerMardirossian C, Bokoch GM . GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 2005; 15: 356–363.

    Article  CAS  PubMed  Google Scholar 

  8. Boulter E, Garcia-Mata R, Guilluy C, Dubash A, Rossi G, Brennwald PJ et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 2010; 12: 477–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harding MA, Theodorescu D . RhoGDI signaling provides targets for cancer therapy. Eur J Cancer 2010; 46: 1252–1259.

    Article  CAS  PubMed  Google Scholar 

  10. Gildea JJ, Seraj MJ, Oxford G, Harding MA, Hampton GM, Moskaluk CA et al. RhoGD12 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 2002; 62: 6418–6423.

    CAS  PubMed  Google Scholar 

  11. Lopez-Pedrera C, Villalba JM, Siendones E, Barbarroja N, Gomez-Diaz C, Rodriguez-Ariza A et al. Proteomic analysis of acute myeloid leukemia: identification of potential early biomarkers and therapeutic targets. Proteomics 2006; 2006-6 (Suppl 1): S293–S299.

    Article  Google Scholar 

  12. Ma L, Xu G, Sotnikova A, Szczepanowski M, Giefing M, Krause K et al. Loss of expression of LyGDI (ARHGDIB), a rho GDP-dissociation inhibitor, in Hodgkin lymphoma. Br J Haematol 2007; 139: 217–223.

    Article  CAS  PubMed  Google Scholar 

  13. Niu H, Li H, Xu C, He P . Expression profile of RhoGDI2 in lung cancers and role of RhoGDI2 in lung cancer metastasis. Oncol Rep 2010; 24: 465–471.

    CAS  PubMed  Google Scholar 

  14. Theodorescu D, Sapinoso LM, Conaway MR, Oxford G, Hampton GM, Frierson HF . Reduced expression of metastasis suppressor RhoGD12 is associated with decreased survival for patients with bladder cancer. Clin Cancer Res 2004; 10: 3800–3806.

    Article  CAS  PubMed  Google Scholar 

  15. Abiatari I, DeOliveira T, Kerkadze V, Schwager C, Esposito I, Giese NA et al. Consensus transcriptome signature of perineural invasion in pancreatic carcinoma. Mol Cancer Therap 2009; 8: 1494–1504.

    Article  CAS  Google Scholar 

  16. Cho HJ, Baek KE, Park S-M, Kim I-K, Choi Y-L, Cho H-J et al. RhoGDI2 expression is associated with tumor growth and malignant progression of gastric cancer. Clin Cancer Res 2009; 15: 2612–2619.

    Article  CAS  PubMed  Google Scholar 

  17. Moissoglu K, McRoberts KS, Meier JA, Theodorescu D, Schwartz MA . Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of rhoGTPases. Cancer Res 2009; 69: 2838–2844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu Y, Moissogiu K, Wang H, Wang X, Frierson HF, Schwartz MA et al. Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proc Natl Acad Sci USA 2009; 106: 5807–5812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gorvel JP, Chang TC, Boretto J, Azuma T, Chavrier P . Differential properties of D4/LyGDI versus RhoGDI: phosphorylation and rho GTPase selectivity. FEBS Lett 1998; 422: 269–273.

    Article  CAS  PubMed  Google Scholar 

  20. Scherle P, Behrens T, Staudt LM . LY-GDI, a GDP-dissociation inhibitor of the RhoA GTP-binding protein, is expressed preferentially in lymphocytes. Proc Natl Acad Sci USA 1993; 90: 7568–7572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saito N, Shirai Y . Protein kinase C gamma (PKC gamma): function of neuron specific isotype. J Biochem 2002; 132: 683–687.

    Article  CAS  PubMed  Google Scholar 

  22. Rex EB, Rankin ML, Yang Y, Lu Q, Gerfen CR, Jose PA et al. Identification of RanBP 9/10 as interacting partners for protein kinase C (PKC) gamma/delta and the D(1) dopamine receptor: regulation of PKC-mediated receptor phosphorylation. Mol Pharmacol 2010; 78: 69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rabinovitz I, Toker A, Mercurio AM . Protein kinase C-dependent mobilization of the alpha 6 beta 4 integrin from hemidesmosomes and its association with actin-rich cell protrusions drive the chemotactic migration of carcinoma cells. J Cell Biol 1999; 146: 1147–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scheffzek K, Stephan I, Jensen ON, Illenberger D, Gierschik P . The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI. Nat Struct Biol 2000; 7: 122–126.

    Article  CAS  PubMed  Google Scholar 

  25. Siliceo M, Garcia-Bernal D, Carrasco S, Diaz-Flores E, Leskow FC, Teixido J et al. Beta 2-chimaerin provides a diacylglycerol-dependent mechanism for regulation of adhesion and chemotaxis of T cells. J Cell Sci 2006; 119: 141–152.

    Article  CAS  PubMed  Google Scholar 

  26. Golovanov AP, Chuang TH, DerMardirossian C, Barsukov I, Hawkins D, Badii R et al. Structure-activity relationships in flexible protein domains: regulation of rho GTPases by RhoGDI and D4 GDI. J Mol Biol 2001; 305: 121–135.

    Article  CAS  PubMed  Google Scholar 

  27. Keep NH, Barnes M, Barsukov I, Badii R, Lian LY, Segal AW et al. A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 1997; 5: 623–633.

    Article  CAS  PubMed  Google Scholar 

  28. Dovas A, Choi Y, Yoneda A, Multhaupt HAB, Kwon S-H, Kang D et al. Serine 34 phosphorylation of Rho guanine dissociation inhibitor (RhoGDI alpha) links signaling from conventional protein kinase C to RhoGTPase in cell adhesion. J Biol Chem 2010; 285: 23294–23306.

    Article  Google Scholar 

  29. Koren R, Langzam L, Paz A, Livne PM, Gal R, Sampson SR . Protein kinase C (PKC) isoenzymes immunohistochemistry in lymph node revealing solution-fixed, paraffin-embedded bladder tumors. Appl Immunohistochem Mol Morphol 2000; 8: 166–171.

    CAS  PubMed  Google Scholar 

  30. Aaltonen V, Koivunen J, Laato M, Peltonen J . Heterogeneity of cellular proliferation within transitional cell carcinoma: correlation of protein kinase C alpha/betal expression and activity. J Histochem Cytochem 2006; 54: 795–806.

    Article  CAS  PubMed  Google Scholar 

  31. Aaltonen V, Peltonen J . PKC alpha/beta I inhibitor Go6976 induces dephosphorylation of constitutively hyperphosphorylated Rb and G(1) arrest in T24 cells. Anticancer Res 2010; 30: 3995–3999.

    CAS  PubMed  Google Scholar 

  32. Koivunen J, Aaltonen V, Koskela S, Lehenkari P, Laato M, Peltonen J . Protein kinase C alpha/beta inhibitor Go6976 promotes formation of cell junctions and inhibits invasion of urinary bladder carcinoma cells. Cancer Res 2004; 64: 5693–5701.

    Article  CAS  PubMed  Google Scholar 

  33. Griner EM, Caino MC, Sosa MS, Colon-Gonzalez F, Chalmers MJ, Mischak H et al. A novel cross-talk in diacylglycerol signaling: the Rac-GAP beta 2-chimaerin is negatively regulated by protein kinase C delta-mediated phosphorylation. J Biol Chem 2010; 285: 16931–16941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Myr-PKCα was a generous gift of Dr Marcelo G Kazanietz (University of Pennsylvania). This work was supported by National Institutes of Health grant CA143971 to DT. EMG was supported by the Paul Mellon Urologic Cancer Institute (Charlottesville, VA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Theodorescu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griner, E., Churchill, M., Brautigan, D. et al. PKCα phosphorylation of RhoGDI2 at Ser31 disrupts interactions with Rac1 and decreases GDI activity. Oncogene 32, 1010–1017 (2013). https://doi.org/10.1038/onc.2012.124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.124

Keywords

This article is cited by

Search

Quick links