Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Early-stage formation of an epigenetic field defect in a mouse colitis model, and non-essential roles of T- and B-cells in DNA methylation induction

Abstract

Epigenetic fields for cancerization are involved in development of human cancers, especially those associated with inflammation and multiple occurrences. However, it is still unclear when such field defects are formed and what component of inflammation is involved in induction of aberrant DNA methylation. Here, in a mouse colitis model induced by dextran sulfate sodium (DSS), we identified three CpG islands specifically methylated in colonic epithelial cells exposed to colitis. Their methylation levels started to increase as early as 8 weeks after DSS treatment and continued to increase until colon cancers developed at 15 weeks. In contrast to the temporal profile of DNA methylation levels, infiltration of inflammatory cells spiked immediately after the DSS treatment and then gradually decreased. Exposure of cultured colonic epithelial cells to DSS did not induce DNA methylation and it was indicated that inflammation triggered by the DSS treatment was responsible for methylation induction. To clarify components of inflammation involved, severe combined immunodeficiency (SCID) mice that lack functional T- and B-cells were similarly treated. Even in SCID mice, DNA methylation, along with colon tumors, were induced at the same levels as in their background strain of mice (C.B17). Comparative analysis of inflammation-related genes showed that Ifng, Il1b and Nos2 had expression concordant with methylation induction whereas Il2, Il6, Il10, Tnf did not. These results showed that an epigenetic field defect is formed at early stages of colitis-associated carcinogenesis and that functional T and B cells are non-essential for the formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Araki Y, Sugihara H, Hattori T . (2006). In vitro effects of dextran sulfate sodium on a Caco-2 cell line and plausible mechanisms for dextran sulfate sodium-induced colitis. Oncol Rep 16: 1357–1362.

    CAS  PubMed  Google Scholar 

  • Autschbach F, Giese T, Gassler N, Sido B, Heuschen G, Heuschen U et al. (2002). Cytokine/chemokine messenger-RNA expression profiles in ulcerative colitis and Crohn's disease. Virchows Arch 441: 500–513.

    Article  CAS  PubMed  Google Scholar 

  • Bosma GC, Custer RP, Bosma MJ . (1983). A severe combined immunodeficiency mutation in the mouse. Nature 301: 527–530.

    Article  CAS  PubMed  Google Scholar 

  • Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH . (2003). A genetic explanation of Slaughter's concept of field cancerization: evidence and clinical implications. Cancer Res 63: 1727–1730.

    CAS  PubMed  Google Scholar 

  • Cappello M, Keshav S, Prince C, Jewell DP, Gordon S . (1992). Detection of mRNAs for macrophage products in inflammatory bowel disease by in situ hybridisation. Gut 33: 1214–1219.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng H, Bjerknes M, Amar J . (1984). Methods for the determination of epithelial cell kinetic parameters of human colonic epithelium isolated from surgical and biopsy specimens. Gastroenterology 86: 78–85.

    CAS  PubMed  Google Scholar 

  • Dieleman LA, Ridwan BU, Tennyson GS, Beagley KW, Bucy RP, Elson CO . (1994). Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 107: 1643–1652.

    Article  CAS  PubMed  Google Scholar 

  • Esteller M . (2008). Epigenetics in cancer. N Engl J Med 358: 1148–1159.

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF, Herranz M, Espada J, Ballestar E, Paz MF, Ropero S et al. (2004). A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res 64: 5527–5534.

    Article  CAS  PubMed  Google Scholar 

  • Garrity-Park MM, Loftus Jr EV., Sandborn WJ, Bryant SC, Smyrk TC . (2010). Methylation Status of Genes in Non-Neoplastic Mucosa From Patients With Ulcerative Colitis-Associated Colorectal Cancer. Am J Gastroenterol.

  • Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S et al. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15: 103–113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hahn MA, Hahn T, Lee DH, Esworthy RS, Kim BW, Riggs AD et al. (2008). Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res 68: 10280–10289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanada T, Kobayashi T, Chinen T, Saeki K, Takaki H, Koga K et al. (2006). IFNgamma-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J Exp Med 203: 1391–1397.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hmadcha A, Bedoya FJ, Sobrino F, Pintado E . (1999). Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production. J Exp Med 190: 1595–1604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodge DR, Xiao W, Clausen PA, Heidecker G, Szyf M, Farrar WL . (2001). Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. J Biol Chem 276: 39508–39511.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CJ, Klump B, Holzmann K, Borchard F, Gregor M, Porschen R . (1998). Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. Cancer Res 58: 3942–3945.

    CAS  PubMed  Google Scholar 

  • Hur K, Niwa T, Toyoda T, Tsukamoto T, Tatematsu M, Yang HK et al. (2011). Insufficient role of cell proliferation in aberrant DNA methylation induction and involvement of specific types of inflammation. Carcinogenesis 32: 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA . (2001). Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61: 3573–3577.

    CAS  PubMed  Google Scholar 

  • Ito R, Shin-Ya M, Kishida T, Urano A, Takada R, Sakagami J et al. (2006). Interferon-gamma is causatively involved in experimental inflammatory bowel disease in mice. Clin Exp Immunol 146: 330–338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones PA, Baylin SB . (2007). The epigenomics of cancer. Cell 128: 683–692.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kass DH, Kim J, Rao A, Deininger PL . (1997). Evolution of B2 repeats: the muroid explosion. Genetica 99: 1–13.

    CAS  PubMed  Google Scholar 

  • Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, Segal E et al. (2006). Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 38: 149–153.

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Lee HC, Kim SY, Yeom YI, Ryu KJ, Min BH et al. (2011). Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations. Ann Surg Oncol (doi:10.1245/s10434-011-1573-y).

    Article  PubMed Central  PubMed  Google Scholar 

  • Kondo Y, Kanai Y, Sakamoto M, Mizokami M, Ueda R, Hirohashi S . (2000). Genetic instability and aberrant DNA methylation in chronic hepatitis and cirrhosis—A comprehensive study of loss of heterozygosity and microsatellite instability at 39 loci and DNA hypermethylation on 8 CpG islands in microdissected specimens from patients with hepatocellular carcinoma. Hepatology 32: 970–979.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W . (1993). Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75: 263–274.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, de Haar C, Chen M, Deuring J, Gerrits MM, Smits R et al. (2009). Disease-related expression of the IL-6/STAT3/SOCS3 signaling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis. Gut 59: 227–235.

    Article  PubMed  Google Scholar 

  • Ligumsky M, Simon PL, Karmeli F, Rachmilewitz D . (1990). Role of interleukin 1 in inflammatory bowel disease—enhanced production during active disease. Gut 31: 686–689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maekita T, Nakazawa K, Mihara M, Nakajima T, Yanaoka K, Iguchi M et al. (2006). High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 12: 989–995.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlan JM, Seth R, Vautier G, Robins RA, Scott BB, Hawkey CJ et al. (1997). Interleukin-8 and inducible nitric oxide synthase mRNA levels in inflammatory bowel disease at first presentation. J Pathol 181: 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Nagao M, Ochiai M, Okochi E, Ushijima T, Sugimura T . (2001). LacI transgenic animal study: relationships among DNA-adduct levels, mutant frequencies and cancer incidences. Mutat Res 477: 119–124.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima T, Maekita T, Oda I, Gotoda T, Yamamoto S, Umemura S et al. (2006). Higher methylation levels in gastric mucosae significantly correlate with higher risk of gastric cancers. Cancer Epidemiol Biomarkers Prev 15: 2317–2321.

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Chen SF, Hollander D . (1996). Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. Gut 39: 234–241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niwa T, Tsukamoto T, Toyoda T, Mori A, Tanaka H, Maekita T et al. (2010). Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res 70: 1430–1440.

    Article  CAS  PubMed  Google Scholar 

  • Niwa T, Yamashita S, Tsukamoto T, Kuramoto T, Nomoto T, Wakazono K et al. (2005). Whole-genome analyses of loss of heterozygosity and methylation analysis of four tumor-suppressor genes in N-methyl-N’-nitro-N-nitrosoguanidine-induced rat stomach carcinomas. Cancer Sci 96: 409–413.

    Article  CAS  PubMed  Google Scholar 

  • Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S et al. (2008). Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118: 560–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian X, Huang C, Cho CH, Hui WM, Rashid A, Chan AO . (2008). E-cadherin promoter hypermethylation induced by interleukin-1beta treatment or H. pylori infection in human gastric cancer cell lines. Cancer Lett 263: 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Riggs AD, Xiong Z . (2004). Methylation and epigenetic fidelity. Proc Natl Acad Sci USA 101: 4–5.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg DW, Giardina C, Tanaka T . (2009). Mouse models for the study of colon carcinogenesis. Carcinogenesis 30: 183–196.

    Article  CAS  PubMed  Google Scholar 

  • Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I . (1993). Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75: 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Schulmann K, Sterian A, Berki A, Yin J, Sato F, Xu Y et al. (2005). Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk. Oncogene 24: 4138–4148.

    Article  CAS  PubMed  Google Scholar 

  • Takeshima H, Yamashita S, Shimazu T, Niwa T, Ushijima T . (2009). The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands. Genome Res 19: 1974–1982.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H . (2003). A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci 94: 965–973.

    Article  CAS  PubMed  Google Scholar 

  • Taniwaki K, Fukamachi H, Komori K, Ohtake Y, Nonaka T, Sakamoto T et al. (2007). Stroma-derived matrix metalloproteinase (MMP)-2 promotes membrane type 1-MMP-dependent tumor growth in mice. Cancer Res 67: 4311–4319.

    Article  CAS  PubMed  Google Scholar 

  • Ushijima T . (2005). Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 5: 223–231.

    Article  CAS  PubMed  Google Scholar 

  • Ushijima T . (2007). Epigenetic field for cancerization. J Biochem Mol Biol 40: 142–150.

    CAS  PubMed  Google Scholar 

  • Ushijima T, Okochi-Takada E . (2005). Aberrant methylations in cancer cells: where do they come from? Cancer Sci 96: 206–211.

    Article  CAS  PubMed  Google Scholar 

  • Vuillemenot BR, Pulling LC, Palmisano WA, Hutt JA, Belinsky SA . (2004). Carcinogen exposure differentially modulates RAR-beta promoter hypermethylation, an early and frequent event in mouse lung carcinogenesis. Carcinogenesis 25: 623–629.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Dubois RN . (2010). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29: 781–788.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita S, Hosoya K, Gyobu K, Takeshima H, Ushijima T . (2009). Development of a novel output value for quantitative assessment in methylated DNA immunoprecipitation-CpG island microarray analysis. DNA Res 16: 275–286.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita S, Takahashi S, McDonell N, Watanabe N, Niwa T, Hosoya K et al. (2008). Methylation silencing of transforming growth factor-beta receptor type II in rat prostate cancers. Cancer Res 68: 2112–2121.

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu YZ et al. (2005). Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet 37: 265–274.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr H Fukamachi for his kind provision of the LIF-16 cell line. This study was supported by the Third-term Comprehensive Cancer Control Strategy from the Ministry of Health, Labour and Welfare, Japan; and by the Global Research Laboratory Program from Korea Foundation for International Cooperation of Science & Technology. MK and YS are recipients of Research Resident Fellowships from the Foundation for Promotion of Cancer Research.

This study was supported by the Third-term Comprehensive Cancer Control Strategy from the Ministry of Health, Labour and Welfare, Japan (TU), and by the Global Research Laboratory Program from Korea Foundation for International Cooperation of Science & Technology (Y-JK and TU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Ushijima.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsurano, M., Niwa, T., Yasui, Y. et al. Early-stage formation of an epigenetic field defect in a mouse colitis model, and non-essential roles of T- and B-cells in DNA methylation induction. Oncogene 31, 342–351 (2012). https://doi.org/10.1038/onc.2011.241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.241

Keywords

This article is cited by

Search

Quick links