Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Divergent functions for eIF4E and S6 kinase by sonic hedgehog mitogenic signaling in the developing cerebellum

Abstract

Cerebellar development entails rapid peri-natal proliferation of cerebellar granule neuron precursors (CGNPs), proposed cells-of-origin for certain medulloblastomas. CGNPs require insulin-like growth factor (IGF) for survival and sonic hedgehog (Shh)—implicated in medulloblastoma—for proliferation. The IGF-responsive kinase mammalian target of rapamycin (mTOR) drives proliferation-associated protein synthesis. We asked whether Shh signaling regulates mTOR targets to promote CGNP proliferation despite constitutive IGF signaling under proliferative and differentiation-promoting conditions. Surprisingly, Shh promoted eukaryotic initiation factor 4E (eIF4E) expression, but inhibited S6 kinase (S6K). In vivo, S6K activity specifically marked the CGNP population transitioning from proliferation-competent to post-mitotic. Indeed, eIF4E was required for CGNP proliferation, while S6K activation drove cell cycle exit. Protein phosphatase 2A (PP2A) inhibition rescued S6K activity. Moreover, Shh upregulated the PP2A B56γ subunit, which targets S6K for inactivation and was required for CGNP proliferation. These findings reveal unique developmental functions for eIF4E and S6 kinase wherein their activity is specifically uncoupled by mitogenic Shh signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Altman J, Bayer SA . (1997). Development of the cerebellar system in relation toits eveolution, structure, and functions. CRC Press: Boca Raton, FLA.

    Google Scholar 

  • Bateman JM, McNeill H . (2004). Temporal control of differentiation by the insulin receptor/tor pathway in Drosophila. Cell 119: 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN et al. (2002). Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297: 1559–1561.

    Article  CAS  PubMed  Google Scholar 

  • Bielinski VA, Mumby MC . (2007). Functional analysis of the PP2A subfamily of protein phosphatases in regulating Drosophila S6 kinase. Exp Cell Res 313: 3117–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM . (1998). RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95: 1432–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC . (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5: 127–136.

    Article  CAS  PubMed  Google Scholar 

  • Ciemerych MA, Kenney AM, Sicinska E, Kalaszczynska I, Bronson RT, Rowitch DH et al. (2002). Development of mice expressing a single D-type cyclin. Genes Dev 16: 3277–3289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corradetti MN, Guan KL . (2006). Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene 25: 6347–6360.

    Article  CAS  PubMed  Google Scholar 

  • D'Mello SR, Borodezt K, Soltoff SP . (1997). Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J Neurosci 17: 1548–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahmane N, Ruiz-i-Altaba A . (1999). Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126: 3089–3100.

    PubMed  Google Scholar 

  • Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M et al. (2001). The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128: 5201–5212.

    CAS  PubMed  Google Scholar 

  • Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM et al. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275: 661–665.

    Article  CAS  PubMed  Google Scholar 

  • Dutton R, Yamada T, Turnley A, Bartlett PF, Murphy M . (1999a). Regulation of spinal motoneuron differentiation by the combined action of Sonic hedgehog and neurotrophin 3. Clin Exp Pharmacol Physiol 26: 746–748.

    Article  CAS  PubMed  Google Scholar 

  • Dutton R, Yamada T, Turnley A, Bartlett PF, Murphy M . (1999b). Sonic hedgehog promotes neuronal differentiation of murine spinal cord precursors and collaborates with neurotrophin 3 to induce Islet-1. J Neurosci 19: 2601–2608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S et al. (2009). YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev 23: 2729–2741.

    Article  Google Scholar 

  • Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J . (2004). mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 24: 200–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogarty MP, Emmenegger BA, Grasfeder LL, Oliver TG, Wechsler-Reya RJ . (2007). Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells. Proc Natl Acad Sci USA 104: 2973–2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N . (1999). eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68: 913–963.

    Article  CAS  PubMed  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N . (2001). Regulation of translation initiation by FRAP/mTOR. Genes Dev 15: 807–826.

    Article  CAS  PubMed  Google Scholar 

  • Hahn H, Wojnowski L, Specht K, Kappler R, Calzada-Wack J, Potter D et al. (2000). Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem 275: 28341–28344.

    Article  CAS  PubMed  Google Scholar 

  • Hahn K, Miranda M, Francis VA, Vendrell J, Zorzano A, Teleman AA . (2010). PP2A regulatory subunit PP2A-B′ counteracts S6K phosphorylation. Cell Metab 11: 438–444.

    Article  CAS  PubMed  Google Scholar 

  • Hartley D, Cooper GM . (2002). Role of mTOR in the degradation of IRS-1: regulation of PP2A activity. J Cell Biochem 85: 304–314.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann W, Koch A, Brune H, Waha A, Schuller U, Dani I et al. (2005). Insulin-like growth factor II is involved in the proliferation control of medulloblastoma and its cerebellar precursor cells. Am J Pathol 166: 1153–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatten ME, Gao W-Q, Morrison ME, Mason CA . (1998). The cerebellum: purification and co-culture of identified cell populations. In: Banker GaG K (ed). Culturing Nerve Cells, 2nd edn. MIT Press: Cambridge, MA, pp 419–459.

    Google Scholar 

  • Hay N, Sonenberg N . (2004). Upstream and downstream of mTOR. Genes Dev 18: 1926–1945.

    Article  CAS  PubMed  Google Scholar 

  • Hepker J, Wang QT, Motzny CK, Holmgren R, Orenic TV . (1997). Drosophila cubitus interruptus forms a negative feedback loop with patched and regulates expression of Hedgehog target genes. Development 124: 549–558.

    CAS  PubMed  Google Scholar 

  • Ho KS, Scott MP . (2002). Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Curr Opin Neurobiol 12: 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Katoh Y, Katoh M . (2009). Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 9: 873–886.

    Article  CAS  PubMed  Google Scholar 

  • Kenney AM, Cole MD, Rowitch DH . (2003). Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130: 15–28.

    Article  CAS  PubMed  Google Scholar 

  • Kenney AM, Rowitch DH . (2000). Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors [In Process Citation]. Mol Cell Biol 20: 9055–9067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenney AM, Widlund HR, Rowitch DH . (2004). Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131: 217–228.

    Article  CAS  PubMed  Google Scholar 

  • Khaleghpour K, Pyronnet S, Gingras AC, Sonenberg N . (1999). Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities. Mol Cell Biol 19: 4302–4310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma XM, Blenis J . (2009). Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10: 307–318.

    Article  PubMed  Google Scholar 

  • Mares V, Lodin Z, Srajer J . (1970). The cellular kinetics of the developing mouse cerebellum. I. The generation cycle, growth fraction and rate of proliferation of the external granular layer. Brain Res 23: 323–342.

    Article  CAS  PubMed  Google Scholar 

  • Marti E, Bumcrot DA, Takada R, McMahon AP . (1995). Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375: 322–325.

    Article  CAS  PubMed  Google Scholar 

  • Northcott PA, Fernandez LA, Hagan JP, Ellison DW, Grajkowska W, Gillespie Y et al. (2009). The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res 69: 3249–3255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM et al. (2003). Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci USA 100: 7331–7336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parathath SR, Mainwaring LA, Fernandez LA, Campbell DO, Kenney AM . (2008). Insulin receptor substrate 1 is an effector of sonic hedgehog mitogenic signaling in cerebellar neural precursors. Development 135: 3291–3300.

    Article  CAS  PubMed  Google Scholar 

  • Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence Jr JC et al. (1994). Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371: 762–767.

    Article  CAS  PubMed  Google Scholar 

  • Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415: 436–442.

    Article  CAS  PubMed  Google Scholar 

  • Rios I, Alvarez-Rodriguez R, Marti E, Pons S . (2004). Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling. Development 131: 3159–3168.

    Article  CAS  PubMed  Google Scholar 

  • Rorick AM, Mei W, Liette NL, Phiel C, El-Hodiri HM, Yang J . (2007). PP2A:B56epsilon is required for eye induction and eye field separation. Dev Biol 302: 477–493.

    Article  CAS  PubMed  Google Scholar 

  • Rosenwald IB, Rhoads DB, Callanan LD, Isselbacher KJ, Schmidt EV . (1993). Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proc Natl Acad Sci USA 90: 6175–6178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J et al. (2007). RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 282: 14056–14064.

    Article  CAS  PubMed  Google Scholar 

  • Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C et al. (2004). The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10: 484–486.

    Article  CAS  PubMed  Google Scholar 

  • Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T et al. (2005). Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 19: 2199–2211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF et al. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22: 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC . (1998). Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 17: 6649–6659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjostrom SK, Finn G, Hahn WC, Rowitch DH, Kenney AM . (2005). The cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell 9: 327–338.

    Article  CAS  PubMed  Google Scholar 

  • Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A et al. (2009). The miR-1792 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 106: 2812–2817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virshup DM, Shenolikar S . (2009). From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33: 537–545.

    Article  CAS  PubMed  Google Scholar 

  • von Manteuffel SR, Dennis PB, Pullen N, Gingras AC, Sonenberg N, Thomas G . (1997). The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol Cell Biol 17: 5426–5436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Manteuffel SR, Gingras AC, Ming XF, Sonenberg N, Thomas G . (1996). 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc Natl Acad Sci USA 93: 4076–4080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace VA . (1999). Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9: 445–448.

    Article  CAS  PubMed  Google Scholar 

  • Wechsler-Reya RJ, Scott MP . (1999). Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog [see comments]. Neuron 22: 103–114.

    Article  CAS  PubMed  Google Scholar 

  • Wechsler-Reya R, Scott MP . (2001). The developmental biology of brain tumors. Annu Rev Neurosci 24: 385–428.

    Article  CAS  PubMed  Google Scholar 

  • Ye P, Xing Y, Dai Z, D'Ercole AJ . (1996). In vivo actions of insulin-like growth factor-I (IGF-I) on cerebellum development in transgenic mice: evidence that IGF-I increases proliferation of granule cell progenitors. Brain Res Dev Brain Res 95: 44–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank John Blenis (Harvard Medical School) for providing the HA-tagged S6 kinase plasmid. These studies were supported by grants to AMK from the NINDS (R01NS061070) and the Handler Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Kenney.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainwaring, L., Kenney, A. Divergent functions for eIF4E and S6 kinase by sonic hedgehog mitogenic signaling in the developing cerebellum. Oncogene 30, 1784–1797 (2011). https://doi.org/10.1038/onc.2010.564

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.564

Keywords

This article is cited by

Search

Quick links