Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hdm2 negatively regulates telomerase activity by functioning as an E3 ligase of hTERT

Abstract

In this study, we identified posttranslational regulation of human telomerase reverse-transcriptase (hTERT) by the E3 ligase Hdm2. The telomerase activity generated by exogenous hTERT in U2OS cells was reduced on adriamycin treatment. The overexpressed levels of hTERT were also decreased under the same conditions. These processes were reversed by treatment with a proteasome inhibitor or depletion of Hdm2. Furthermore, intrinsic telomerase activity was increased in HCT116 cells with ablation of Hdm2. Immunoprecipitation analyses showed that hTERT and Hdm2 bound to each other in multiple domains. Ubiquitination analyses showed that Hdm2 could polyubiquitinate hTERT principally at the N-terminus, which was further degraded in a proteasome-dependent manner. An hTERT mutant with all five lysine residues at the N-terminus of hTERT that mutated to arginine became resistant to Hdm2-mediated ubiquitination and degradation. In U2OS cells, depletion of Hdm2 or addition of the Hdm2-resistant hTERT mutant strengthened the cellular protective effects against apoptosis. Similar results were obtained with the Hdm2-stable H1299 cell line. These observations indicate that Hdm2 is an E3 ligase of hTERT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Akiyama M, Hideshima T, Hayashi T, Tai YT, Mitsiades CS, Mitsiades N et al. (2002). Cytokines modulate telomerase activity in a human multiple myeloma cell line. Cancer Res 62: 3876–3882.

    CAS  PubMed  Google Scholar 

  • Blackburn EH . (2000). The end of the (DNA) line. Nat Struct Biol 7: 847–850.

    Article  CAS  PubMed  Google Scholar 

  • Blasco MA . (2003). Telomeres and cancer: a tale with many endings. Curr Opin Genet Dev 13: 70–76.

    Article  CAS  PubMed  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–352.

    Article  CAS  PubMed  Google Scholar 

  • Bouska A, Eischen CM . (2009). Murine double minute 2: p53-independent roads lead to genome instability or death. Trends Biochem Sci 34: 279–286.

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Gu W . (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell 21: 307–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairney CJ, Keith WN . (2008). Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie 90: 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Camus S, Menendez S, Cheok CF, Stevenson LF, Lain S, Lane DP . (2007). Ubiquitin-independent degradation of p53 mediated by high-risk human papillomavirus protein E6. Oncogene 26: 4059–4070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Li H, Deb S, Liu JP . (2002). TERT regulates cell survival independent of telomerase enzymatic activity. Oncogene 21: 3130–3138.

    Article  CAS  PubMed  Google Scholar 

  • Carroll VA, Ashcroft M . (2008). Regulation of angiogenic factors by HDM2 in renal cell carcinoma. Cancer Res 68: 545–552.

    Article  CAS  PubMed  Google Scholar 

  • Cong Y, Shay JW . (2008). Actions of human telomerase beyond telomeres. Cell Res 18: 725–732.

    Article  CAS  PubMed  Google Scholar 

  • Cong YS, Wright WE, Shay JW . (2002). Human telomerase and its regulation. Microbiol Mol Biol Rev 66: 407–425. table of contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Counter CM, Meyerson M, Eaton EN, Ellisen LW, Caddle SD, Haber DA et al. (1998). Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene 16: 1217–1222.

    Article  CAS  PubMed  Google Scholar 

  • Dairkee SH, Nicolau M, Sayeed A, Champion S, Ji Y, Moore DH et al. (2007). Oxidative stress pathways highlighted in tumor cell immortalization: association with breast cancer outcome. Oncogene 26: 6269–6279.

    Article  CAS  PubMed  Google Scholar 

  • Dalla Torre CA, Maciel RM, Pinheiro NA, Andrade JA, De Toledo SR, Villa LL et al. (2002). TRAP-silver staining, a highly sensitive assay for measuring telomerase activity in tumor tissue and cell lines. Braz J Med Biol Res 35: 65–68.

    Article  CAS  PubMed  Google Scholar 

  • de Lange T . (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19: 2100–2110.

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M et al. (2002). The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62: 4736–4745.

    CAS  PubMed  Google Scholar 

  • Enge M, Bao W, Hedstrom E, Jackson SP, Moumen A, Selivanova G . (2009). MDM2-dependent downregulation of p21 and hnRNP K provides a switch between apoptosis and growth arrest induced by pharmacologically activated p53. Cancer Cell 15: 171–183.

    Article  CAS  PubMed  Google Scholar 

  • Froment P, Dupont J, Christophe-Marine J . (2008). Mdm2 exerts pro-apoptotic activities by antagonizing insulin-like growth factor-I-mediated survival. Cell Cycle 7: 3098–3103.

    Article  CAS  PubMed  Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . (1999). Creation of human tumour cells with defined genetic elements. Nature 400: 464–468.

    Article  CAS  PubMed  Google Scholar 

  • Harley CB . (2008). Telomerase and cancer therapeutics. Nat Rev Cancer 8: 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Kanaya T, Kyo S, Hamada K, Takakura M, Kitagawa Y, Harada H et al. (2000). Adenoviral expression of p53 represses telomerase activity through down-regulation of human telomerase reverse transcriptase transcription. Clin Cancer Res 6: 1239–1247.

    CAS  PubMed  Google Scholar 

  • Kim JH, Park SM, Kang MR, Oh SY, Lee TH, Muller MT et al. (2005). Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev 19: 776–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim NW, Wu F . (1997). Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res 25: 2595–2597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusumoto M, Ogawa T, Mizumoto K, Ueno H, Niiyama H, Sato N et al. (1999). Adenovirus-mediated p53 gene transduction inhibits telomerase activity independent of its effects on cell cycle arrest and apoptosis in human pancreatic cancer cells. Clin Cancer Res 5: 2140–2147.

    CAS  PubMed  Google Scholar 

  • Kyo S, Takakura M, Taira T, Kanaya T, Itoh H, Yutsudo M et al. (2000). Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res 28: 669–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luiten RM, Pene J, Yssel H, Spits H . (2003). Ectopic hTERT expression extends the life span of human CD4+ helper and regulatory T-cell clones and confers resistance to oxidative stress-induced apoptosis. Blood 101: 4512–4519.

    Article  CAS  PubMed  Google Scholar 

  • Maser RS, DePinho RA . (2002). Connecting chromosomes, crisis, and cancer. Science 297: 565–569.

    Article  CAS  PubMed  Google Scholar 

  • McEachern MJ, Krauskopf A, Blackburn EH . (2000). Telomeres and their control. Annu Rev Genet 34: 331–358.

    Article  CAS  PubMed  Google Scholar 

  • Oh W, Ghim J, Lee EW, Yang MR, Kim ET, Ahn JH et al. (2009). PML-IV functions as a negative regulator of telomerase by interacting with TERT. J Cell Sci 122: 2613–2622.

    Article  CAS  PubMed  Google Scholar 

  • Oh W, Lee EW, Sung YH, Yang MR, Ghim J, Lee HW et al. (2006). Jab1 induces the cytoplasmic localization and degradation of p53 in coordination with Hdm2. J Biol Chem 281: 17457–17465.

    Article  CAS  PubMed  Google Scholar 

  • Rahman R, Latonen L, Wiman KG . (2005). hTERT antagonizes p53-induced apoptosis independently of telomerase activity. Oncogene 24: 1320–1327.

    Article  CAS  PubMed  Google Scholar 

  • Roth A, Yssel H, Pene J, Chavez EA, Schertzer M, Lansdorp PM et al. (2003). Telomerase levels control the lifespan of human T lymphocytes. Blood 102: 849–857.

    Article  PubMed  Google Scholar 

  • Saller E, Tom E, Brunori M, Otter M, Estreicher A, Mack DH et al. (1999). Increased apoptosis induction by 121F mutant p53. EMBO J 18: 4424–4437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shats I, Milyavsky M, Tang X, Stambolsky P, Erez N, Brosh R et al. (2004). p53-dependent down-regulation of telomerase is mediated by p21waf1. J Biol Chem 279: 50976–50985.

    Article  CAS  PubMed  Google Scholar 

  • Teng L, Specht MC, Barden CB, Fahey III TJ . (2003). Antisense hTERT inhibits thyroid cancer cell growth. J Clin Endocrinol Metab 88: 1362–1366.

    Article  CAS  PubMed  Google Scholar 

  • Urquidi V, Tarin D, Goodison S . (2000). Role of telomerase in cell senescence and oncogenesis. Annu Rev Med 51: 65–79.

    Article  CAS  PubMed  Google Scholar 

  • Vaziri H, Benchimol S . (1998). Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 8: 279–282.

    Article  CAS  PubMed  Google Scholar 

  • Veldman T, Horikawa I, Barrett JC, Schlegel R . (2001). Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol 75: 4467–4472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH et al. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11: 694–704.

    Article  CAS  PubMed  Google Scholar 

  • Wu YL, Dudognon C, Nguyen E, Hillion J, Pendino F, Tarkanyi I et al. (2006). Immunodetection of human telomerase reverse-transcriptase (hTERT) re-appraised: nucleolin and telomerase cross paths. J Cell Sci 119: 2797–2806.

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Wang Q, Gruber A, Bjorkholm M, Chen Z, Zaid A et al. (2000). Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene 19: 5123–5133.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Mar V, Zhou W, Harrington L, Robinson MO . (1999). Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 13: 2388–2399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang R . (2005). p53-independent activities of MDM2 and their relevance to cancer therapy. Curr Cancer Drug Targets 5: 9–20.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea (0820110) and by a grant of the Korea Healthcare technology R&D Project, Ministry of Health and Welfare, Republic of Korea (A080333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Song.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, W., Lee, EW., Lee, D. et al. Hdm2 negatively regulates telomerase activity by functioning as an E3 ligase of hTERT. Oncogene 29, 4101–4112 (2010). https://doi.org/10.1038/onc.2010.160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.160

Keywords

This article is cited by

Search

Quick links