Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of the DNA damage response in acute myeloid leukemia versus myelodysplastic syndrome

Abstract

The molecular mechanisms responsible for the evolution from the preleukemic entities of low-risk myelodysplastic syndrome (MDS) to the less favorable forms of high-risk MDS, as well as those enabling transformation to acute myeloid leukemia (AML), are still incompletely understood. Abundant evidence from solid tumors demonstrates that preneoplastic lesions activate signaling pathways of a DNA damage response (DDR), which functions as an ‘anticancer barrier’ hindering tumorigenesis. Testing the hypothesis that subgroups of MDS and AML differ with respect to DDR, we first assessed markers of DDR (phosphorylation of ATM, Chk-1, Chk-2 and H2AX) in cell lines representing different entities of MDS (P39, MOLM-13) and AML (MV4-11, KG-1) before and after γ-irradiation. Although γ-irradiation induced apoptosis and G2/M arrest and a concomitant increase in the phosphorylation of ATM, Chk-1 and H2AX in MDS-derived cell lines, this radiation response was attenuated in the AML-derived cell lines. It is noteworthy that KG-1, but not P39 cells exhibit signs of an endogenous activation of the DDR. Similarly, we found that the frequency of P-ATM+ cells detectable in bone marrow (BM) biopsies increased in samples from patients with AML as compared with high-risk MDS samples and significantly correlated with the percentage of BM blasts. In contrast, the frequency of γ-H2AX+ cells was heterogeneous in all subgroups of AML and MDS. Whereas intermediate-1 MDS samples contained as little P-Chk-1 and P-Chk-2 as healthy controls, staining for both checkpoint kinases increased in intermediate-2 and high-risk MDS, yet declined to near-to-background levels in AML samples. Thus the activation of Chk-1 and Chk-2 behaves in accord with the paradigm established for solid tumors, whereas ATM is activated during and beyond transformation. In conclusion, we demonstrate the heterogeneity of the DDR response in MDS and AML and provide evidence for its selective suppression in AML because of the uncoupling between activated ATM and inactive checkpoint kinases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Bartkova J, Lukas J . (2007). DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26: 7773–77739.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Bakkenist CJ, Rajpert-De Meyts EA et al. (2005a). ATM activation in normal human tissues and testicular cancer. Cell Cycle 4: 838–845.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005b). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsi Z, Sehested M, Nesland JM, Rajpert-De Meyts E, Skakkebaek NE et al. (2007). DNA damage response mediators MDC1 and 53BP1: constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours. Oncogene 26: 7414–7422.

    Article  CAS  PubMed  Google Scholar 

  • Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. (1982). Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 51: 189–199.

    Article  CAS  PubMed  Google Scholar 

  • Boehrer S, Adès L, Braun T, Galluzzi L, Grosjean J, Fabre C et al. (2008). Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study. Blood 111: 2170–2780.

    Article  CAS  PubMed  Google Scholar 

  • Braun T, Carvalho G, Coquelle A, Vozenin MC, Lepelley P, Hirsch F et al. (2006). NF-kappaB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood 107: 1156–1165.

    Article  CAS  PubMed  Google Scholar 

  • Castedo M, Ferri K, Roumier T, Metivier D, Zamzami N, Kroemer G . (2002). Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Methods 265: 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Coquelle A, Mouhamad S, Pequignot MO, Braun T, Carvalho G, Vivet S et al. (2006). Enrichment of non-synchronized cells in the G1, S and G2 phases of the cell cycle for the study of apoptosis. Biochem Pharmacol 72: 1396–1404.

    Article  CAS  PubMed  Google Scholar 

  • DiTullio Jr RA, Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J et al. (2002). 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 4: 998–1002.

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Quan R, Feng X, Gillis A, He L, Matsumoto ED et al. (2006). ATM activation is accompanied with earlier stages of prostate tumorigenesis. Biochim Biophys Acta 1763: 1090–1097.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A . (2004). H2AX: the histone guardian of the genome. DNA Repair (Amst) 3: 959–967.

    Article  CAS  Google Scholar 

  • Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L et al. (2007). Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14: 1237–1243.

    Article  CAS  PubMed  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O'Connor PM et al. (2000). The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 275: 5600–5605.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al. (1997). International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89: 2079–2088.

    CAS  PubMed  Google Scholar 

  • Grimwade D . (2001). The clinical significance of cytogenetic abnormalities in acute myeloid leukaemia. Best Pract Res Clin Haematol 14: 497–529.

    Article  CAS  PubMed  Google Scholar 

  • Grimwade D, Moorman A, Hills R, Wheatley K, Walker H, Harrison G et al. (2004). Impact of karyotype on treatment outcome in acute myeloid leukemia. Ann Hematol 83 (Suppl 1): S45–S48.

    PubMed  Google Scholar 

  • Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ et al. (2001). The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 98: 1312–1320.

    Article  CAS  PubMed  Google Scholar 

  • Grosjean-Raillard J, Tailler M, Adès L, Perfettini JL, Fabre C, Braun T et al. (2009). ATM mediates constitutive NF-kappaB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 28: 1099–1109.

    Article  CAS  PubMed  Google Scholar 

  • Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI et al. (2004). Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64: 9152–9159.

    Article  CAS  PubMed  Google Scholar 

  • Horibe S, Takagi M, Unno J, Nagasawa M, Morio T, Arai A et al. (2007). DNA damage check points prevent leukemic transformation in myelodysplastic syndrome. Leukemia 21: 2195–2198.

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J . (2004). Cell-cycle checkpoints and cancer. Nature 432: 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Klaus M, Haferlach T, Schnittger S, Kern W, Hiddemann W, Schoch C . (2004). Cytogenetic profile in de novo acute myeloid leukemia with FAB subtypes M0, M1, and M2: a study based on 652 cases analyzed with morphology, cytogenetics, and fluorescence in situ hybridization. Cancer Genet Cytogenet 155: 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Koeffler HP, Golde DW . (1980). Human myeloid leukemia cell lines: a review. Blood 56: 344–350.

    CAS  PubMed  Google Scholar 

  • Lange B, Valtieri M, Santoli D, Caracciolo D, Mavilio F, Gemperlein I et al. (1987). Growth factor requirements of childhood acute leukemia: establishment of GM-CSF-dependent cell lines. Blood 70: 192–199.

    CAS  PubMed  Google Scholar 

  • Marzo I, Susin SA, Petit PX, Ravagnan L, Brenner C, Larochette N et al. (1998). Caspases disrupt mitochondrial membrane barrier function. FEBS Lett 427: 198–202.

    Article  CAS  PubMed  Google Scholar 

  • Matsuo Y, MacLeod RA, Uphoff CC, Drexler HG, Nishizaki C, Katayama Y et al. (1997). Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). Leukemia 11: 1469–1477.

    Article  CAS  PubMed  Google Scholar 

  • Nagai M, Seki S, Kitahara T, Abe T, Minato K, Watanabe S et al. (1984). A novel human myelomonocytoid cell line, P39/Tsugane, derived from overt leukemia following myelodysplastic syndrome. Gann 75: 1100–1107.

    CAS  PubMed  Google Scholar 

  • Nuciforo PG, Luise C, Capra M, Pelosi G, d'Adda di Fagagna F . (2007). Complex engagement of DNA damage response pathways in human cancer and in lung tumor progression. Carcinogenesis 28: 2082–2088.

    Article  CAS  PubMed  Google Scholar 

  • Parker JE, Mufti GJ . (1998). Ineffective haemopoiesis and apoptosis in myelodysplastic syndromes. Br J Haematol 101: 220–230.

    Article  CAS  PubMed  Google Scholar 

  • Parker JE, Mufti GJ . (2000). Excessive apoptosis in low risk myelodysplastic syndromes (MDS). Leuk Lymphoma 40: 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Parker JE, Mufti GJ . (2001). The role of apoptosis in the pathogenesis of the myelodysplastic syndromes. Int J Hematol 73: 416–428.

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A et al. (2000). Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96: 4075–4083.

    CAS  PubMed  Google Scholar 

  • Thiriet C, Hayes JJ . (2005). Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. Mol Cell 18: 617–622.

    Article  CAS  PubMed  Google Scholar 

  • Tort F, Bartkova J, Sehested M, Orntoft T, Lukas J, Bartek J . (2006). Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis. Cancer Res 66: 10258–10263.

    Article  CAS  PubMed  Google Scholar 

  • Vardiman JW, Harris NL, Brunning RD . (2002). The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100: 2292–2302.

    Article  CAS  PubMed  Google Scholar 

  • Wu ZH, Shi Y, Tibbetts RS, Miyamoto S . (2006). Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 311: 1141–1146.

    Article  CAS  PubMed  Google Scholar 

  • Zamzami N, Kroemer G . (2004). Methods to measure membrane potential and permeability transition in the mitochondria during apoptosis. Methods Mol Biol 282: 103–115.

    CAS  PubMed  Google Scholar 

  • Zamzami N, El Hamel C, Maisse C, Brenner C, Muñoz-Pinedo C, Belzacq AS et al. (2000). Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene 19: 6342–6350.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SB and LA contributed equally to this paper. SB receives a scholarship from the Deutsche Forschungsgemeinschaft, LA receives a scholarship from Assistance Publique-Hopitaux de Paris and Caisse Nationale d'Assurance Maladie des Professions Indépendantes. GK is supported by Cancéropôle Ile-de-France, Institut National du Cancer, Fondation de France, Association Laurette Fugain, Cent pour Sang la Vie, Agence National de la Recherche and the European Commission (ApoSys, ChemoRes., Apopt-Train, RIGHT). The project was carried out with the support from the Gutermuth-Stiftung. SB, LA, NT, LG, CF, MT and KAO. performed and analysed the experiments. WKH., SK., GB, OGO., MR, CG, VE, SdeB., ST and PF provided bone marrow biopsies and patient data. SB and GK designed the study and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Kroemer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehrer, S., Adès, L., Tajeddine, N. et al. Suppression of the DNA damage response in acute myeloid leukemia versus myelodysplastic syndrome. Oncogene 28, 2205–2218 (2009). https://doi.org/10.1038/onc.2009.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.69

Keywords

This article is cited by

Search

Quick links