Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E

Abstract

One strategy to improve therapies in advanced prostate cancer (PC) involves targeting genes that are activated by androgen withdrawal to delay the emergence of the androgen-independent (AI) phenotype. Heat shock protein 27 (Hsp27) expression becomes highly upregulated in PC cells after androgen withdrawal or chemotherapy, in which it functions as a cytoprotective chaperone to confer broad-spectrum treatment resistance. The purpose of this study is to elucidate anti-apoptotic pathways regulated by Hsp27 that are activated during PC progression. Using two-hybrid experiment, we found that Hsp27 was having a major role in the protein translational initiation process. Furthermore, using complementary DNA (cDNA) microarray analysis, 4E binding protein 1 was identified as being proportionately and highly regulated by Hsp27. These data led us to analyze the protein synthesis initiation pathway, which is a prerequisite for cell growth and proliferation. Using northern and western blot analysis, we found that Hsp27 downregulation decreased eukaryotic translation initiation factor 4E (eIF4E) expression at the protein, but not mRNA, level. The cytoprotection afforded by Hsp27 overexpression was attenuated by eIF4E knockdown using specific eIF4E short interfering RNA (siRNA). Co-immunoprecipitation and co-immunofluorescence confirmed that Hsp27 colocalizes and interacts directly with eIF4E. Hsp27-eIF4E interaction decreases eIF4E ubiquitination and proteasomal degradation. By chaperoning eIF4E, Hsp27 seems to protect the protein synthesis initiation process to enhance cell survival during cell stress induced by castration or chemotherapy. Forced overexpression of eIF4E induces resistance to androgen-withdrawal and paclitaxel treatment in the prostate LNCaP cells in vitro. These findings identify Hsp27 as a modulator of eIF4E and establish a potential mechanism for the eIF4E-regulated apoptosis after androgen ablation and chemotherapy. Targeting Hsp27–eIF4E interaction may serve as a therapeutic target in advanced PC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Armengol G, Rojo F, Castellvi J, Iglesias C, Cuatrecasas M, Pons B et al. (2007). 4E-binding protein 1: a key molecular ‘funnel factor’ in human cancer with clinical implications. Cancer Res 67: 7551–7555.

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Yang JM, Hait WN . (2005). Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase. Cancer Res 65: 3806–3810.

    Article  CAS  PubMed  Google Scholar 

  • Averous J, Proud CG . (2006). When translation meets transformation: the mTOR story. Oncogene 25: 6423–6435.

    Article  CAS  PubMed  Google Scholar 

  • Bubendorf L, Kolmer M, Kononen J, Koivisto P, Mousses S, Chen Y et al. (1999). Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst 91: 1758–1764.

    Article  CAS  PubMed  Google Scholar 

  • Cornford PA, Dodson AR, Parsons KF, Desmond AD, Woolfenden A, Fordham M et al. (2000). Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 60: 7099–7105.

    CAS  PubMed  Google Scholar 

  • Frankfurt OS, Robb JA, Sugarbaker EV, Villa L . (1997). Apoptosis in breast carcinomas detected with monoclonal antibody to single-stranded DNA: relation to bcl-2 expression, hormone receptors, and lymph node metastases. Clin Cancer Res 3: 465–471.

    CAS  PubMed  Google Scholar 

  • Fusi A, Procopio G, Della Torre S, Ricotta R, Bianchini G, Salvioni R et al. (2004). Treatment options in hormone-refractory metastatic prostate carcinoma. Tumori 90: 535–546.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher E, Gapstur R . (2006). Hormone-refractory prostate cancer: a shifting paradigm in treatment. Clin J Oncol Nurs 10: 233–240.

    Article  PubMed  Google Scholar 

  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G . (2006). Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5: 2592–2601.

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Schmitt E, Cande C, Vahsen N, Parcellier A, Kroemer G . (2003). HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle 2: 579–584.

    Article  CAS  PubMed  Google Scholar 

  • Gleave ME, Hsieh JT, Wu HC, von Eschenbach AC, Chung LW . (1992). Serum prostate specific antigen levels in mice bearing human prostate LNCaP tumors are determined by tumor volume and endocrine and growth factors. Cancer Res 52: 1598–1605.

    CAS  PubMed  Google Scholar 

  • Gleave ME, Miayake H, Goldie J, Nelson C, Tolcher A . (1999). Targeting bcl-2 gene to delay androgen-independent progression and enhance chemosensitivity in prostate cancer using antisense bcl-2 oligodeoxynucleotides. Urology 54: 36–46.

    Article  CAS  PubMed  Google Scholar 

  • Graff JR, Konicek BW, Carter JH, Marcusson EG . (2008). Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 68: 631–634.

    Article  CAS  PubMed  Google Scholar 

  • Graff JR, Konicek BW, Lynch RL, Dumstorf CA, Dowless MS, McNulty AM et al. (2009). eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res 69: 3866–3873.

    Article  CAS  PubMed  Google Scholar 

  • Heesom KJ, Gampel A, Mellor H, Denton RM . (2001). Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr Biol 11: 1374–1379.

    Article  CAS  PubMed  Google Scholar 

  • Hotte SJ, Yu EY, Hirte HW, Higano CS, Gleave M, Chi KN . (2009). OGX-427, a 2′ methoxyethyl antisense oligonucleotide (ASO), against Hsp27: Results of a first-in-human trial. J Clin Oncol 27: 15s (suppl; abstr 3506).

    Article  Google Scholar 

  • Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY et al. (2001). Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410: 549–554.

    Article  CAS  PubMed  Google Scholar 

  • Kamada M, So A, Muramaki M, Rocchi P, Beraldi E, Gleave M . (2007). Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol Cancer Ther 6: 299–308.

    Article  CAS  PubMed  Google Scholar 

  • Kiyama S, Morrison K, Zellweger T, Akbari M, Cox M, Yu D et al. (2003). Castration-induced increases in insulin-like growth factor-binding protein 2 promotes proliferation of androgen-independent human prostate LNCaP tumors. Cancer Res 63: 3575–3584.

    CAS  PubMed  Google Scholar 

  • Liang JJ . (2000). Interaction between beta-amyloid and lens alphaB-crystallin. FEBS Lett 484: 98–101.

    Article  CAS  PubMed  Google Scholar 

  • Lucas A, Petrylak DP . (2006). The case for early chemotherapy for the treatment of metastatic disease. J Urol 176: S72–5.

    Article  CAS  PubMed  Google Scholar 

  • Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N . (2004). eIF4E—from translation to transformation. Oncogene 23: 3172–3179.

    Article  CAS  PubMed  Google Scholar 

  • Meli M, Pennati M, Curto M, Daidone MG, Plescia J, Toba S et al. (2006). Small-molecule targeting of heat shock protein 90 chaperone function: rational identification of a new anticancer lead. J Med Chem 49: 7721–7730.

    Article  CAS  PubMed  Google Scholar 

  • Miller H, Poon S, Hibbert B, Rayner K, Chen YX, O'Brien ER . (2005). Modulation of estrogen signaling by the novel interaction of heat shock protein 27, a biomarker for atherosclerosis, and estrogen receptor beta: mechanistic insight into the vascular effects of estrogens. Arterioscler Thromb Vasc Biol 25: e10–4.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell BS . (2003). The proteasome—an emerging therapeutic target in cancer. N Engl J Med 348: 2597–2598.

    Article  PubMed  Google Scholar 

  • Miyake H, Nelson C, Rennie PS, Gleave ME . (2000a). Testosterone-repressed prostate message-2 is an antiapoptotic gene involved in progression to androgen independence in prostate cancer. Cancer Res 60: 170–176.

    CAS  PubMed  Google Scholar 

  • Miyake H, Pollak M, Gleave ME . (2000b). Castration-induced up-regulation of insulin-like growth factor binding protein-5 potentiates insulin-like growth factor-I activity and accelerates progression to androgen independence in prostate cancer models. Cancer Res 60: 3058–3064.

    CAS  PubMed  Google Scholar 

  • Murata T, Shimotohno K . (2006). Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E. J Biol Chem 281: 20788–20800.

    Article  CAS  PubMed  Google Scholar 

  • Oridate N, Kim HJ, Xu X, Lotan R . (2005). Growth inhibition of head and neck squamous carcinoma cells by small interfering RNAs targeting eIF4E or cyclin D1 alone or combined with cisplatin. Cancer Biol Ther 4: 318–323.

    Article  CAS  PubMed  Google Scholar 

  • Othumpangat S, Kashon M, Joseph P . (2005). Eukaryotic translation initiation factor 4E is a cellular target for toxicity and death due to exposure to cadmium chloride. J Biol Chem 280: 25162–25169.

    Article  CAS  PubMed  Google Scholar 

  • Parcellier A, Brunet M, Schmitt E, Col E, Didelot C, Hammann A et al. (2006). HSP27 favors ubiquitination and proteasomal degradation of p27Kip1 and helps S-phase re-entry in stressed cells. FASEB J 20: 1179–1181.

    Article  CAS  PubMed  Google Scholar 

  • Parcellier A, Schmitt E, Gurbuxani S, Seigneurin-Berny D, Pance A, Chantome A et al. (2003). HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 23: 5790–5802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroulakis E, Mamane Y, Le Bacquer O, Shahbazian D, Sonenberg N . (2006). mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer 94: 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Petrylak DP, Tangen CM, Hussain MH, Lara Jr PN, Jones JA, Taplin ME et al. (2004). Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351: 1513–1520.

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM . (2001). Ubiquitin enters the new millennium. Mol Cell 8: 499–504.

    Article  CAS  PubMed  Google Scholar 

  • Plescia J, Salz W, Xia F, Pennati M, Zaffaroni N, Daidone MG et al. (2005). Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7: 457–468.

    Article  CAS  PubMed  Google Scholar 

  • Richter JD, Sonenberg N . (2005). Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433: 477–480.

    Article  CAS  PubMed  Google Scholar 

  • Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C et al. (2005). Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res 65: 11083–11093.

    Article  CAS  PubMed  Google Scholar 

  • Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L et al. (2006). Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int 98: 1082–1089.

    Article  CAS  PubMed  Google Scholar 

  • Rocchi P, Muracciole X, Fina F, Mulholland DJ, Karsenty G, Palmari J et al. (2004a). Molecular analysis integrating different pathways associated with androgen-independent progression in LuCaP 23.1 xenograft. Oncogene 23: 9111–9119.

    Article  CAS  PubMed  Google Scholar 

  • Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L et al. (2004b). Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 64: 6595–6602.

    Article  CAS  PubMed  Google Scholar 

  • Rojo F, Najera L, Lirola J, Jimenez J, Guzman M, Sabadell MD et al. (2007). 4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res 13: 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV . (1993). Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 13: 7358–7363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C et al. (2004). The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10: 484–486.

    Article  CAS  PubMed  Google Scholar 

  • Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I . (2002). Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416: 183–187.

    Article  CAS  PubMed  Google Scholar 

  • Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN et al. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351: 1502–1512.

    Article  CAS  PubMed  Google Scholar 

  • Topisirovic I, Ruiz-Gutierrez M, Borden KL . (2004). Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 64: 8639–8642.

    Article  CAS  PubMed  Google Scholar 

  • Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S et al. (2004). Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428: 332–337.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Valentina Evdokimova (British Columbia Cancer Agency, Canada) for her helpful advice on eIF4E experiments. We thank Dr Takayuki Murata (McGill University, Canada) for providing the pcDNA3.1 FLAG-tagged eIF4E vectors. We thank Virginia Yago and Paul Jugpal (Prostate Centre, Canada) for their excellent technical assistance in animal and laboratory experimentation. We thank Dr Jonathan Nowak (Inserm U624, France) for his excellent help in confocal microscopy. This work was supported from grants by l’Institut National de la Santé et de la Recherche Médicale (INSERM), l’Association pour la Recherche sur le Cancer (ARC) and l’Association pour la Recherche sur les Tumeurs de la Prostate (ARTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Rocchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrieu, C., Taieb, D., Baylot, V. et al. Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. Oncogene 29, 1883–1896 (2010). https://doi.org/10.1038/onc.2009.479

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.479

Keywords

This article is cited by

Search

Quick links