Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Metabotropic glutamate receptor subtype-1 is essential for in vivo growth of melanoma

Abstract

Ectopic expression of metabotropic glutamate receptor subtype 1 (mGluR1) in mouse melanocytes induces melanoma formation. Although requirement of mGluR1 for development of melanoma in the initial stage has been demonstrated, its role in melanoma growth in vivo remains unclear. In this study, we developed novel transgenic mice that conditionally express mGluR1 in melanocytes, using a tetracycline regulatory system. Pigmented lesions on the ears and tails of the transgenic mice began to appear 29 weeks after activation of the mGluR1 transgene, and the transgenic mice produced melanomas at a frequency of 100% 52 weeks after transgene activation. Subsequent inactivation of the mGluR1 transgene in melanoma-bearing mice inhibited melanoma growth with reduction of immunoreactivity to phosphorylated ERK1/2, whereas mice with persistent expression of mGluR1 developed larger melanoma burdens. mGluR1 expression is thus required not only for melanoma development but also for melanoma growth in vivo. These findings suggest that growth of melanoma can be inhibited in vivo by eliminating only one of the multiple genetic anomalies involved in tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aiba A, Chen C, Herrup K, Rosenmund C, Stevens CF, Tonegawa S . (1994a). Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell 79: 365–375.

    Article  CAS  PubMed  Google Scholar 

  • Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K et al. (1994b). Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79: 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Kelz MB, Zeng G, Sakai N, Steffen C, Shockett PE et al. (1998). Transgenic animals with inducible, targeted gene expression in brain. Mol Pharmacol 54: 495–503.

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhu H, Wetzel WJ, Philbert MA . (1996). Spontaneous melanocytosis in transgenic mice. J Invest Dermatol 106: 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  • Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N et al. (1999). Essential role for oncogenic Ras in tumour maintenance. Nature 400: 468–472.

    Article  CAS  PubMed  Google Scholar 

  • Chung JH, Whiteley M, Felsenfeld G . (1993). A 50 element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74: 505–514.

    Article  CAS  PubMed  Google Scholar 

  • Conn PJ, Pin JP . (1997). Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37: 205–237.

    Article  CAS  PubMed  Google Scholar 

  • Conquet F, Bashir ZI, Davies CH, Daniel H, Ferraguti F, Bordi F et al. (1994). Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372: 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 27: 949–954.

    Article  Google Scholar 

  • Gossen M, Bujard H . (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89: 5547–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handerson T, Pawelek JM . (2003). β1,6-branced oligosaccharides and coarse vesicles: a common, pervasive phenotype in melanoma and other human cancers. Cancer Res 63: 5363–5369.

    CAS  PubMed  Google Scholar 

  • Huntington JT, Shields JM, Der CJ, Wyatt CA, Benbow U, Slingluff Jr CL et al. (2004). Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J Biol Chem 279: 33168–33176.

    Article  CAS  PubMed  Google Scholar 

  • Karim F, Wang CC, Gereau IV RW . (2001). Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J Neurosci 21: 3771–3779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin YE, Namkoong J, Cohen-Solal K, Shin SS, Martino JJ, Oka M et al. (2006). Stimulation of oncogenic metabotropic glutamate receptor 1 in melanoma cells activates ERK1/2 via PKCepsilon. Cell Signal 18: 1279–1286.

    Article  CAS  PubMed  Google Scholar 

  • Marin YE, Namkoong J, Shin SS, Raines J, Degenhardt K, White E et al. (2005). Grm5 expression is not required for the oncogenic role of Grm1 in melanocytes. Neuropharmacology 49: 70–79.

    Article  CAS  PubMed  Google Scholar 

  • Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S . (1991). Sequence and expression of a metabotropic glutamate receptor. Nature 349: 760–765.

    Article  CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LCW, Mooi WJ, Peeper DS . (2008). BRAFE600 in benign and malignant human tumours. Oncogene 27: 877–895.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi S . (1992). Molecular diversity of glutamate receptors and implications for brain function. Science 258: 597–603.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi S . (1994). Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  • Nambiar S, Mirmohammadsadegh A, Doroudi R, Gustrau A, Marini A, Roeder G et al. (2005). Signaling networks in cutaneous melanoma metastasis identified by complementary DNA microarrays. Arch Dermatol 141: 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Namkoong J, Shin SS, Lee HJ, Marin YE, Wall BA, Goydos JS et al. (2007). Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res 67: 2298–2305.

    Article  CAS  PubMed  Google Scholar 

  • Pollock PM, Cohen-Solal K, Sood R, Namkoong J, Martino J, Koganti A et al. (2003). Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nature Genet 4: 108–112.

    Article  Google Scholar 

  • Rzeski W, Turski L, Ikonomidou C . (2001). Glutamate antagonists limit tumor growth. Proc Natl Acad Sci USA 98: 6372–6377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL et al. (2003). Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 63: 756–759.

    CAS  PubMed  Google Scholar 

  • Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP . (2005). Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 65: 2412–2421.

    Article  CAS  PubMed  Google Scholar 

  • Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE et al. (2005). NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci USA 102: 15605–15610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thandi S, Blank JL, Challiss RA . (2002). Group I metabotropic glutamate receptors, mGluR1a and mGluR5 couple to extracellular signal-regulated kinase (ERK) activation via distinct, but overlapping, signaling pathways. J Neurochem 83: 1139–1153.

    Article  CAS  PubMed  Google Scholar 

  • Thomas NE . (2006). BRAF somatic mutations in malignant melanoma and melanocytic naevi. Melanoma Res 16: 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Van Dyke T, Jacks T . (2002). Cancer modeling in the modern era: progress and challenges. Cell 108: 135–144.

    Article  CAS  PubMed  Google Scholar 

  • Wong CW, Fan YS, Chan TL, Chan AS, Ho LC, Ma TK et al. (2005). BRAF and NRAS mutations are uncommon in melanomas arising in diverse internal organs. J Clin Pathol 58: 640–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr S Nakanishi for rat mGluR1a cDNA, Dr Y Ishida for β-globin insulator and the members of Aiba lab for helpful discussion. This study supported in part by Grant-in-Aid for Scientific Research on Priority Areas—Molecular Brain Science, a grant for the 21st Century COE Program ‘Center for Excellence for Signal Transduction Disease: Diabetes Mellitus as Model’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and grants from the Naito Foundation, the Takeda Science Foundation, the Uehara Memorial Foundation and the Astellas Foundation for Research on Metabolic Disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Aiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtani, Y., Harada, T., Funasaka, Y. et al. Metabotropic glutamate receptor subtype-1 is essential for in vivo growth of melanoma. Oncogene 27, 7162–7170 (2008). https://doi.org/10.1038/onc.2008.329

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.329

Keywords

This article is cited by

Search

Quick links