Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

NMR as a tool to investigate the structure, dynamics and function of membrane proteins

This Perspective provides an overview of recent progress, successes, challenges and future opportunities in the application of solution NMR and solid-state NMR methods to study the structure, dynamics and function of membrane proteins.

Abstract

Membrane-protein NMR occupies a unique niche for determining structures, assessing dynamics, examining folding, and studying the binding of lipids, ligands and drugs to membrane proteins. However, NMR analyses of membrane proteins also face special challenges that are not encountered with soluble proteins, including sample preparation, size limitation, spectral crowding and sparse data accumulation. This Perspective provides a snapshot of current achievements, future opportunities and possible limitations in this rapidly developing field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A selection of recent de novo membrane-protein structures determined by solution NMR or ssNMR: OprG (PDB 2N6L), Pseudomonas aeruginosa outer-membrane protein G, a transporter for small amino acids29; YadA (PDB 2LME), Yersinia enterocolitica transmembrane domain of adhesin A, an outer-membrane autotransporter5; pSRII (PDB 2KSY), Natronomonas pharaonis phototaxis receptor sensory rhodopsin II20; TSPO (PDB 2MGY), Mus musculus mitochondrial translocator protein, a cholesterol and porphyrin importer into mitochondria21; and ASR (PDB 2M3G), Anabaena cyanobacterium sensory rhodopsin7.
Figure 2: Membrane-protein function and dynamics, elucidated by NMR.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Wallin, E. & von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Castellani, F. et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 98–102 (2002).

    CAS  PubMed  Google Scholar 

  4. Radoicic, J., Lu, G.J. & Opella, S.J. NMR structures of membrane proteins in phospholipid bilayers. Q. Rev. Biophys. 47, 249–283 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shahid, S.A. et al. Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat. Methods 9, 1212–1217 (2012).

    CAS  PubMed  Google Scholar 

  6. Park, S.H. et al. Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491, 779–783 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, S. et al. Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat. Methods 10, 1007–1012 (2013).

    PubMed  Google Scholar 

  8. Cho, M.-K., Gayen, A., Banigan, J.R., Leninger, M. & Traaseth, N.J. Intrinsic conformational plasticity of native EmrE provides a pathway for multidrug resistance. J. Am. Chem. Soc. 136, 8072–8080 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Traaseth, N.J. et al. Spectroscopic validation of the pentameric structure of phospholamban. Proc. Natl. Acad. Sci. USA 104, 14676–14681 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cady, S.D. et al. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463, 689–692 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma, M. et al. Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330, 509–512 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Andreas, L.B. et al. Structure and mechanism of the influenza A M218-60 dimer of dimers. J. Am. Chem. Soc. 137, 14877–14886 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang, C. & Li, Q. Solution NMR study of integral membrane proteins. Curr. Opin. Chem. Biol. 15, 560–569 (2011).

    CAS  PubMed  Google Scholar 

  14. Oxenoid, K. & Chou, J.J. The present and future of solution NMR in investigating the structure and dynamics of channels and transporters. Curr. Opin. Struct. Biol. 23, 547–554 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang, B. & Tamm, L.K. Structure of outer membrane protein G by solution NMR spectroscopy. Proc. Natl. Acad. Sci. USA 104, 16140–16145 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hiller, S. et al. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321, 1206–1210 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, H.-X. & Cross, T.A. Influences of membrane mimetic environments on membrane protein structures. Annu. Rev. Biophys. 42, 361–392 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Arora, A., Abildgaard, F., Bushweller, J.H. & Tamm, L.K. Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat. Struct. Biol. 8, 334–338 (2001).

    CAS  PubMed  Google Scholar 

  19. Goto, N.K., Gardner, K.H., Mueller, G.A., Willis, R.C. & Kay, L.E. A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J. Biomol. NMR 13, 369–374 (1999).

    CAS  PubMed  Google Scholar 

  20. Gautier, A., Mott, H.R., Bostock, M.J., Kirkpatrick, J.P. & Nietlispach, D. Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat. Struct. Mol. Biol. 17, 768–774 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jaremko, L., Jaremko, M., Giller, K., Becker, S. & Zweckstetter, M. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 343, 1363–1366 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang, B., Bushweller, J.H. & Tamm, L.K. Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J. Am. Chem. Soc. 128, 4389–4397 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cierpicki, T., Liang, B., Tamm, L.K. & Bushweller, J.H. Increasing the accuracy of solution NMR structures of membrane proteins by application of residual dipolar couplings: high-resolution structure of outer membrane protein A. J. Am. Chem. Soc. 128, 6947–6951 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, Y. et al. NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol. Cell 31, 896–908 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Horn, W.D. et al. Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324, 1726–1729 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hagn, F., Etzkorn, M., Raschle, T. & Wagner, G. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J. Am. Chem. Soc. 135, 1919–1925 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Raschle, T. et al. Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J. Am. Chem. Soc. 131, 17777–17779 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kucharska, I., Edrington, T.C., Liang, B. & Tamm, L.K. Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins. J. Biomol. NMR 61, 261–274 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kucharska, I., Seelheim, P., Edrington, T., Liang, B. & Tamm, L.K. OprG harnesses the dynamics of its extracellular loops to transport small amino acids across the outer membrane of Pseudomonas aeruginosa . Structure 23, 2234–2245 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Linser, R. et al. Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew. Chem. Int. Ed. Engl. 50, 4508–4512 (2011).

    CAS  PubMed  Google Scholar 

  31. McDermott, A. Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu. Rev. Biophys. 38, 385–403 (2009).

    CAS  PubMed  Google Scholar 

  32. Wang, S. & Ladizhansky, V. Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog. Nucl. Magn. Reson. Spectrosc. 82, 1–26 (2014).

    PubMed  Google Scholar 

  33. Murphy, O.J. III., Kovacs, F.A., Sicard, E.L. & Thompson, L.K. Site-directed solid-state NMR measurement of a ligand-induced conformational change in the serine bacterial chemoreceptor. Biochemistry 40, 1358–1366 (2001).

    CAS  PubMed  Google Scholar 

  34. Opella, S.J. & Marassi, F.M. Structure determination of membrane proteins by NMR spectroscopy. Chem. Rev. 104, 3587–3606 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ketchem, R.R., Hu, W. & Cross, T.A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261, 1457–1460 (1993).

    CAS  PubMed  Google Scholar 

  36. Shen, Y. et al. Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA 105, 4685–4690 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Berardi, M.J., Shih, W.M., Harrison, S.C. & Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476, 109–113 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Verardi, R., Shi, L., Traaseth, N.J., Walsh, N. & Veglia, G. Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc. Natl. Acad. Sci. USA 108, 9101–9106 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Palmer, A.G. III. NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 104, 3623–3640 (2004).

    CAS  PubMed  Google Scholar 

  40. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    CAS  Google Scholar 

  41. Liang, B., Arora, A. & Tamm, L.K. Fast-time scale dynamics of outer membrane protein A by extended model-free analysis of NMR relaxation data. Biochim. Biophys. Acta 1798, 68–76 (2010).

    CAS  PubMed  Google Scholar 

  42. Brüschweiler, S., Yang, Q., Run, C. & Chou, J.J. Substrate-modulated ADP/ATP-transporter dynamics revealed by NMR relaxation dispersion. Nat. Struct. Mol. Biol. 22, 636–641 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Morrison, E.A. et al. Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 481, 45–50 (2012).

    CAS  Google Scholar 

  44. Morrison, E.A. & Henzler-Wildman, K.A. Transported substrate determines exchange rate in the multidrug resistance transporter EmrE. J. Biol. Chem. 289, 6825–6836 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hwang, P.M. et al. Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc. Natl. Acad. Sci. USA 99, 13560–13565 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hwang, P.M., Bishop, R.E. & Kay, L.E. The integral membrane enzyme PagP alternates between two dynamically distinct states. Proc. Natl. Acad. Sci. USA 101, 9618–9623 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhuang, T., Chisholm, C., Chen, M. & Tamm, L.K. NMR-based conformational ensembles explain pH-gated opening and closing of OmpG channel. J. Am. Chem. Soc. 135, 15101–15113 (2013).

    CAS  PubMed  Google Scholar 

  48. Morrison, E.A., Robinson, A.E., Liu, Y. & Henzler-Wildman, K.A. Asymmetric protonation of EmrE. J. Gen. Physiol. 146, 445–461 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gayen, A., Leninger, M. & Traaseth, N.J. Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE. Nat. Chem. Biol. 12, 141–145 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Russell, R.B. & Eggleston, D.S. New roles for structure in biology and drug discovery. Nat. Struct. Biol. 7 (suppl.), 928–930 (2000).

    CAS  PubMed  Google Scholar 

  51. Assadi-Porter, F.M., Tonelli, M., Maillet, E.L., Markley, J.L. & Max, M. Interactions between the human sweet-sensing T1R2–T1R3 receptor and sweeteners detected by saturation transfer difference NMR spectroscopy. Biochim. Biophys. Acta 1798, 82–86 (2010).

    CAS  PubMed  Google Scholar 

  52. Cox, B.D. et al. Structural analysis of CXCR4-antagonist interactions using saturation-transfer double-difference NMR. Biochem. Biophys. Res. Commun. 466, 28–32 (2015).

    CAS  PubMed  Google Scholar 

  53. O'Connor, C. et al. NMR structure and dynamics of the agonist dynorphin peptide bound to the human kappa opioid receptor. Proc. Natl. Acad. Sci. USA 112, 11852–11857 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pielak, R.M., Oxenoid, K. & Chou, J.J. Structural investigation of rimantadine inhibition of the AM2-BM2 chimera channel of influenza viruses. Structure 19, 1655–1663 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. OuYang, B. et al. Unusual architecture of the p7 channel from hepatitis C virus. Nature 498, 521–525 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ueda, T. et al. Cross-saturation and transferred cross-saturation experiments. Q. Rev. Biophys. 47, 143–187 (2014).

    CAS  PubMed  Google Scholar 

  57. Kofuku, Y. et al. Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4. J. Biol. Chem. 284, 35240–35250 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ueda, T. et al. Structural basis of efficient electron transport between photosynthetic membrane proteins and plastocyanin in spinach revealed using nuclear magnetic resonance. Plant Cell 24, 4173–4186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhuang, T. et al. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc. Natl. Acad. Sci. USA 110, 942–947 (2013).

    CAS  PubMed  Google Scholar 

  60. Etzkorn, M. et al. Complex formation and light activation in membrane-embedded sensory rhodopsin II as seen by solid-state NMR spectroscopy. Structure 18, 293–300 (2010).

    CAS  PubMed  Google Scholar 

  61. Gustavsson, M. et al. Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of phospholamban. Proc. Natl. Acad. Sci. USA 110, 17338–17343 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bokoch, M.P. et al. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463, 108–112 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kofuku, Y. et al. Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat. Commun. 3, 1045 (2012).

    PubMed  Google Scholar 

  64. Kimata, N., Reeves, P.J. & Smith, S.O. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy. J. Magn. Reson. 253, 111–118 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Isogai, S. et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530, 237–241 (2016).

    CAS  PubMed  Google Scholar 

  67. Sounier, R. et al. Propagation of conformational changes during μ-opioid receptor activation. Nature 524, 375–378 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, J.J., Horst, R., Katritch, V., Stevens, R.C. & Wüthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Abraham, S.J. et al. 13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1. J. Biomol. NMR 61, 209–226 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Vostrikov, V.V. et al. Ca2+ ATPase conformational transitions in lipid bilayers mapped by site-directed ethylation and solid-state NMR. ACS Chem. Biol. 11, 329–334 (2016).

    CAS  PubMed  Google Scholar 

  71. Horst, R., Liu, J.J., Stevens, R.C. & Wüthrich, K. β2-adrenergic receptor activation by agonists studied with 19F NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 52, 10762–10765 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kofuku, Y. et al. Functional dynamics of deuterated β2 -adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 53, 13376–13379 (2014).

    CAS  PubMed  Google Scholar 

  73. Ellena, J.F. et al. Dynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation. Proc. Natl. Acad. Sci. USA 106, 20306–20311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Liang, B., Kiessling, V. & Tamm, L.K. Prefusion structure of syntaxin-1A suggests pathway for folding into neuronal trans-SNARE complex fusion intermediate. Proc. Natl. Acad. Sci. USA 110, 19384–19389 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tamm, L.K., Lee, J. & Liang, B. Capturing glimpses of an elusive HIV gp41 prehairpin fusion intermediate. Structure 22, 1225–1226 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fox, D.A. et al. Structure of the Neisserial outer membrane protein Opa: loop flexibility essential to receptor recognition and bacterial engulfment. J. Am. Chem. Soc. 136, 9938–9946 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Williamson, J.A. et al. Structure and multistate function of the transmembrane electron transporter CcdA. Nat. Struct. Mol. Biol. 22, 809–814 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fernández, C., Adeishvili, K. & Wüthrich, K. Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proc. Natl. Acad. Sci. USA 98, 2358–2363 (2001).

    PubMed  PubMed Central  Google Scholar 

  79. Edrington, T.C., Kintz, E., Goldberg, J.B. & Tamm, L.K. Structural basis for the interaction of lipopolysaccharide with outer membrane protein H (OprH) from Pseudomonas aeruginosa . J. Biol. Chem. 286, 39211–39223 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Reckel, S. et al. Solution NMR structure of proteorhodopsin. Angew. Chem. Int. Ed. Engl. 50, 11942–11946 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Poget, S.F. & Girvin, M.E. Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim. Biophys. Acta 1768, 3098–3106 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bayburt, T.H., Grinkova, Y.V. & Sligar, S.G. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2, 853–856 (2002).

    CAS  Google Scholar 

  83. Etzkorn, M., Zoonens, M., Catoire, L.J., Popot, J.-L. & Hiller, S. How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus. J. Membr. Biol. 247, 965–970 (2014).

    CAS  PubMed  Google Scholar 

  84. Orwick-Rydmark, M. et al. Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett. 12, 4687–4692 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants P01 GM72694, R01 GM51329 and R01 AI30557. We thank members of the Tamm laboratory, past and present, for their valuable contributions and R. Nakamoto for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binyong Liang or Lukas K Tamm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, B., Tamm, L. NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat Struct Mol Biol 23, 468–474 (2016). https://doi.org/10.1038/nsmb.3226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing