Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation

Abstract

The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP's concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and dynamics of yTBP-yTAF1 binding.
Figure 2: TATA-box mimicry of yTAF1-TAND1.
Figure 3: Electrostatic and hydrophobic anchoring of yTAF1-TAND2 to yTBP.
Figure 4: Multiple acidic residues in TAND2 affect yeast growth.
Figure 5: Similar TBP-anchoring residues in yTAF1-TAND1 and Mot1 despite reverse sequence tracing.
Figure 6: Conserved surface-groove and anchoring residues in competitive TBP binding.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Goodrich, J.A. & Tjian, R. Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nat. Rev. Genet. 11, 549–558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D'Alessio, J.A., Ng, R., Willenbring, H. & Tjian, R. Core promoter recognition complex changes accompany liver development. Proc. Natl. Acad. Sci. USA 108, 3906–3911 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vannini, A. & Cramer, P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol. Cell 45, 439–446 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Papai, G., Weil, P.A. & Schultz, P. New insights into the function of transcription factor TFIID from recent structural studies. Curr. Opin. Genet. Dev. 21, 219–224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thomas, M.C. & Chiang, C.M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Hahn, S. Structure and mechanism of the RNA polymerase II transcription machinery. Nat. Struct. Mol. Biol. 11, 394–403 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bieniossek, C. et al. The architecture of human general transcription factor TFIID core complex. Nature 493, 699–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Chitikila, C., Huisinga, K.L., Irvin, J.D., Basehoar, A.D. & Pugh, B.F. Interplay of TBP inhibitors in global transcriptional control. Mol. Cell 10, 871–882 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Martel, L.S., Brown, H.J. & Berk, A.J. Evidence that TAF-TATA box-binding protein interactions are required for activated transcription in mammalian cells. Mol. Cell Biol. 22, 2788–2798 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wollmann, P. et al. Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP. Nature 475, 403–407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sigler, P.B. Transcriptional activation: acid blobs and negative noodles. Nature 333, 210–212 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Hahn, S. & Young, E.T. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 189, 705–736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ptashne, M. & Gann, A.A. Activators and targets. Nature 346, 329–331 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Brzovic, P.S. et al. The acidic transcription activator gcn4 binds the mediator subunit gal11/med15 using a simple protein interface forming a fuzzy complex. Mol. Cell 44, 942–953 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, W.L. et al. Structures of three distinct activator-TFIID complexes. Genes Dev. 23, 1510–1521 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baek, H.J., Kang, Y.K. & Roeder, R.G. Human Mediator enhances basal transcription by facilitating recruitment of transcription factor IIB during preinitiation complex assembly. J. Biol. Chem. 281, 15172–15181 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Elmlund, H. et al. Cryo-EM reveals promoter DNA binding and conformational flexibility of the general transcription factor TFIID. Structure 17, 1442–1452 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Kotani, T. et al. A role of transcriptional activators as antirepressors for the autoinhibitory activity of TATA box binding of transcription factor IID. Proc. Natl. Acad. Sci. USA 97, 7178–7183 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muldrow, T.A., Campbell, A.M., Weil, P.A. & Auble, D.T. MOT1 can activate basal transcription in vitro by regulating the distribution of TATA binding protein between promoter and nonpromoter sites. Mol. Cell Biol. 19, 2835–2845 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mal, T.K. et al. Structural and functional characterization on the interaction of yeast TFIID subunit TAF1 with TATA-binding protein. J. Mol. Biol. 339, 681–693 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Takahata, S., Kasahara, K., Kawaichi, M. & Kokubo, T. Autonomous function of the amino-terminal inhibitory domain of TAF1 in transcriptional regulation. Mol. Cell Biol. 24, 3089–3099 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bagby, S. et al. TFIIA-TAF regulatory interplay: NMR evidence for overlapping binding sites on TBP. FEBS Lett. 468, 149–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Kokubo, T., Swanson, M.J., Nishikawa, J.I., Hinnebusch, A.G. & Nakatani, Y. The yeast TAF145 inhibitory domain and TFIIA competitively bind to TATA-binding protein. Mol. Cell Biol. 18, 1003–1012 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, D. et al. Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94, 573–583 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Mal, T.K. et al. Functional silencing of TATA-binding protein (TBP) by a covalent linkage of the N-terminal domain of TBP-associated factor 1. J. Biol. Chem. 282, 22228–22238 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J.L., Nikolov, D.B. & Burley, S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520–527 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Buratowski, S. & Zhou, H. Transcription factor IID mutants defective for interaction with transcription factor IIA. Science 255, 1130–1132 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, T.K. & Roeder, R.G. Involvement of the basic repeat domain of TATA-binding protein (TBP) in transcription by RNA polymerases I, II, and III. J. Biol. Chem. 269, 4891–4894 (1994).

    CAS  PubMed  Google Scholar 

  29. Kotani, T. et al. Identification of highly conserved amino-terminal segments of dTAFII230 and yTAFII145 that are functionally interchangeable for inhibiting TBP-DNA interactions in vitro and in promoting yeast cell growth in vivo. J. Biol. Chem. 273, 32254–32264 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Ozer, J., Mitsouras, K., Zerby, D., Carey, M. & Lieberman, P.M. Transcription factor IIA derepresses TATA-binding protein (TBP)-associated factor inhibition of TBP-DNA binding. J. Biol. Chem. 273, 14293–14300 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Juo, Z.S., Kassavetis, G.A., Wang, J., Geiduschek, E.P. & Sigler, P.B. Crystal structure of a transcription factor IIIB core interface ternary complex. Nature 422, 534–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Lee, D.K., DeJong, J., Hashimoto, S., Horikoshi, M. & Roeder, R.G. TFIIA induces conformational changes in TFIID via interactions with the basic repeat. Mol. Cell Biol. 12, 5189–5196 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Solow, S.P., Lezina, L. & Lieberman, P.M. Phosphorylation of TFIIA stimulates TATA binding protein-TATA interaction and contributes to maximal transcription and viability in yeast. Mol. Cell Biol. 19, 2846–2852 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Solow, S., Salunek, M., Ryan, R. & Lieberman, P.M. Taf(II) 250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J. Biol. Chem. 276, 15886–15892 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Bleichenbacher, M., Tan, S. & Richmond, T.J. Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J. Mol. Biol. 332, 783–793 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Woiwode, A. et al. PTEN represses RNA polymerase III-dependent transcription by targeting the TFIIIB complex. Mol. Cell Biol. 28, 4204–4214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garza, A.M., Khan, S.H. & Kumar, R. Site-specific phosphorylation induces functionally active conformation in the intrinsically disordered N-terminal activation function (AF1) domain of the glucocorticoid receptor. Mol. Cell Biol. 30, 220–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Wright, P.E. & Dyson, H.J. Linking folding and binding. Curr. Opin. Struct. Biol. 19, 31–38 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoeflich, K.P. & Ikura, M. Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108, 739–742 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, C.W., Martinez-Yamout, M.A., Dyson, H.J. & Wright, P.E. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry 49, 9964–9971 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. van Werven, F.J., van Teeffelen, H.A., Holstege, F.C. & Timmers, H.T. Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome. Nat. Struct. Mol. Biol. 16, 1043–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, J. et al. Intrinsic disorder in transcription factors. Biochemistry 45, 6873–6888 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, Y., Geiger, J.H., Hahn, S. & Sigler, P.B. Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Collaborative Computational Project. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  45. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Willard, L. et al. VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 31, 3316–3319 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Andresen, C. et al. Transient structure and dynamics in the disordered c-Myc transactivation domain affect Bin1 binding. Nucleic Acids Res. 40, 6353–6366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mal, T.K. et al. Resonance assignments of 30 kDa complexes of TFIID subunit TAF1 with TATA-binding protein. J. Biomol. NMR 33, 76 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Ahlner, A., Carlsson, M., Jonsson, B.H. & Lundström, P. PINT: a software for integration of peak volumes and extraction of relaxation rates. J. Biomol. NMR published online, http://dx.doi.org/10.1007/s10858-013-9737-7 (9 May 2013).

  52. Mosteller, F. & Tukey, J.W. Data Analysis and Regression: A Second Course in Statistics 133–162 (Addison-Wesley, 1977).

  53. Palmer, A.G. III & Massi, F. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem. Rev. 106, 1700–1719 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Dosset, P., Hus, J.C., Blackledge, M. & Marion, D. Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J. Biomol. NMR 16, 23–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Ohyama, Y., Kasahara, K. & Kokubo, T. Saccharomyces cerevisiae Ssd1p promotes CLN2 expression by binding to the 5′-untranslated region of CLN2 mRNA. Genes Cells 15, 1169–1188 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Takahashi, H., Kasahara, K. & Kokubo, T. Saccharomyces cerevisiae Med9 comprises two functionally distinct domains that play different roles in transcriptional regulation. Genes Cells 14, 53–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Takahata, S. et al. Identification of a novel TATA element-binding protein binding region at the N terminus of the Saccharomyces cerevisiae TAF1 protein. J. Biol. Chem. 278, 45888–45902 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Research Council (621-2011-6028 and 621-2012-5250 to M.S.; 621-2012-5136 to P.L.), VINNOVA (P32045-1 to M.S.), the Swedish Cancer Foundation (11 0681 to M.S.), the Swedish Child Cancer Foundation (PROJ09/092 to M.S.), the Forum Scientium Award (C.A.), the Canadian Institutes for Health Research (MT-13611 to M.I.), the grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (23370077 to T.K.) and equipment grants to Linköping University from the Knut and Alice Wallenberg foundation. M.I. is supported as a Canada Research Chair. We thank H.Th.M. Timmers, L. Penn, C.H. Arrowsmith and P. de Graaf for critical discussion and acknowledge the Swedish NMR Centre, the Protein Science Facility and beamline ID14-1 at the European Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Contributions

M.I. and M.S. conceived of and designed the study. Experiments and data evaluation were designed and performed by M.A., M.I.S. and M.M. (crystallography), Y.O. and T.K. (yeast mutations) and M.A., C.A., S.H., P.L. and M.S. (NMR). M.A., C.A., S.H., M.M. and M.S. wrote the paper. All authors discussed the interpretation and implications of the results and edited the manuscript at all stages.

Corresponding author

Correspondence to Maria Sunnerhagen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–4 and Supplementary Tables 1–3 (PDF 3035 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anandapadamanaban, M., Andresen, C., Helander, S. et al. High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation. Nat Struct Mol Biol 20, 1008–1014 (2013). https://doi.org/10.1038/nsmb.2611

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2611

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing