Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stochastic expression dynamics of a transcription factor revealed by single-molecule noise analysis

This article has been updated

Abstract

Gene expression is inherently stochastic; precise gene regulation by transcription factors is important for cell-fate determination. Many transcription factors regulate their own expression, suggesting that autoregulation counters intrinsic stochasticity in gene expression. Using a new strategy, cotranslational activation by cleavage (CoTrAC), we probed the stochastic expression dynamics of cI, which encodes the bacteriophage λ repressor CI, a fate-determining transcription factor. CI concentration fluctuations influence both lysogenic stability and induction of bacteriophage λ. We found that the intrinsic stochasticity in cI expression was largely determined by CI expression level irrespective of autoregulation. Furthermore, extrinsic, cell-to-cell variation was primarily responsible for CI concentration fluctuations, and negative autoregulation minimized CI concentration heterogeneity by counteracting extrinsic noise and introducing memory. This quantitative study of transcription factor expression dynamics sheds light on the mechanisms cells use to control noise in gene regulatory networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview and validation of the CoTrAC strategy.
Figure 2: CoTrAC analysis of stochastic expression of CI in different regulatory contexts.
Figure 3: Time-dependent noise analysis of CI expression.
Figure 4: Dependence of intrinsic noise, extrinsic noise and memory on genetic regulatory context.

Similar content being viewed by others

Change history

  • 15 July 2012

    In the version of this article initially published online, equations 1 and 3 contained errors. These have been corrected for the print, PDF and HTML versions of this article.

References

  1. Shen-Orr, S.S. et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002).

    Article  CAS  Google Scholar 

  2. Ptashne, M. A Genetic Switch: Phage Lambda Revisited 3rd edn. (Cold Spring Harbor Laboratory Press, 2004).

  3. Yu, J. et al. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    Article  CAS  Google Scholar 

  4. Tobias, J.W. et al. The N-end rule in bacteria. Science 254, 1374–1377 (1991).

    Article  CAS  Google Scholar 

  5. Pedraza, J.M. & Paulsson, J. Effects of molecular memory and bursting on fluctuations in gene expression. Science 319, 339–343 (2008).

    Article  CAS  Google Scholar 

  6. Meyer, B.J., Maurer, R. & Ptashne, M. Gene regulation at the right operator (OR) of bacteriophage λ. II. OR1, OR2, and OR3: their roles in mediating the effects of repressor and cro. J. Mol. Biol. 139, 163–194 (1980).

    Article  CAS  Google Scholar 

  7. Sarai, A. & Takeda, Y. λ repressor recognizes the approximately 2-fold symmetric half-operator sequences asymmetrically. Proc. Natl. Acad. Sci. USA 86, 6513–6517 (1989).

    Article  CAS  Google Scholar 

  8. Levine, A., Bailone, A. & Devoret, R. Cellular levels of the prophage λ and 434 repressors. J. Mol. Biol. 131, 655–661 (1979).

    Article  CAS  Google Scholar 

  9. Reichardt, L. & Kaiser, A.D. Control of λ repressor synthesis. Proc. Natl. Acad. Sci. USA 68, 2185–2189 (1971).

    Article  CAS  Google Scholar 

  10. Wang, J. & Wolynes, P. Intermittency of single-molecule reaction dynamics in fluctuating environments. Phys. Rev. Lett. 74, 4317–4320 (1995).

    Article  CAS  Google Scholar 

  11. Ozbudak, E.M. et al. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002).

    Article  CAS  Google Scholar 

  12. Golding, I. et al. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005).

    Article  CAS  Google Scholar 

  13. Huh, D. & Paulsson, J. Nongenetic heterogeneity from stochastic partitioning at cell division. Nat. Genet. 43, 95–100 (2011).

    Article  CAS  Google Scholar 

  14. Elowitz, M.B. et al. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  Google Scholar 

  15. Rosenfeld, N. et al. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    Article  CAS  Google Scholar 

  16. Swain, P.S., Elowitz, M.B. & Siggia, E.D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99, 12795–12800 (2002).

    Article  CAS  Google Scholar 

  17. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

    Article  CAS  Google Scholar 

  18. Raj, A. et al. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    Article  Google Scholar 

  19. So, L.H. et al. General properties of transcriptional time series in Escherichia coli. Nat. Genet. 43, 554–560 (2011).

    Article  CAS  Google Scholar 

  20. Shahrezaei, V. & Swain, P.S. Analytical distributions for stochastic gene expression. Proc. Natl. Acad. Sci. USA 105, 17256–17261 (2008).

    Article  CAS  Google Scholar 

  21. Zenklusen, D., Larson, D.R. & Singer, R.H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15, 1263–1271 (2008).

    Article  CAS  Google Scholar 

  22. Suter, D.M. et al. Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472–474 (2011).

    Article  CAS  Google Scholar 

  23. Hornos, J.E. et al. Self-regulating gene: an exact solution. Phys. Rev. E 72, 051907 (2005) (Epub 4 November 2005).

    Article  CAS  Google Scholar 

  24. Lepzelter, D., Kim, K.Y. & Wang, J. Dynamics and intrinsic statistical fluctuations of a gene switch. J. Phys. Chem. B 111, 10239–10247 (2007).

    Article  CAS  Google Scholar 

  25. Feng, H., Han, B. & Wang, J. Adiabatic and nonadiabatic nonequilibrium stochastic dynamics of single regulating genes. J. Phys. Chem. B 115, 1254–1261 (2011).

    Article  CAS  Google Scholar 

  26. Feng, H. & Wang, J. Landscape and global stability of nonadiabatic and adiabatic oscillations in a gene network. Biophys. J. 102, 1001–1010 (2012).

    Article  CAS  Google Scholar 

  27. Choi, P.J. et al. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442–446 (2008).

    Article  CAS  Google Scholar 

  28. Singh, A. & Weinberger, L.S. Stochastic gene expression as a molecular switch for viral latency. Curr. Opin. Microbiol. 12, 460–466 (2009).

    Article  CAS  Google Scholar 

  29. Kalmar, T. et al. Regulated fluctuations in nanog expression mediate cell-fate decisions in embryonic stem cells. PLoS Biol. 7, e1000149 (2009).

    Article  Google Scholar 

  30. Feng, H. & Wang, J. A new formulation of two-time correlation functions of Markov chains applied to gene networks. Chem. Phys. Lett. 501, 562–566 (2011).

    Article  CAS  Google Scholar 

  31. Lu, T., Hasty, J. & Wolynes, P.G. Effective temperature in stochastic kinetics and gene networks. Biophys. J. 91, 84–94 (2006).

    Article  CAS  Google Scholar 

  32. Dodd, I.B. et al. Cooperativity in long-range gene regulation by the λ CI repressor. Genes Dev. 18, 344–354 (2004).

    Article  CAS  Google Scholar 

  33. Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–643 (2006).

    Article  CAS  Google Scholar 

  34. Zong, C. et al. Lysogen stability is determined by the frequency of activity bursts from the fate-determining gene. Mol. Syst. Biol. 6, 440 (2010).

    Article  Google Scholar 

  35. Wang, J. Statistics, pathways and dynamics of single molecule protein folding. J. Chem. Phys. 118, 952 (2003).

    Article  CAS  Google Scholar 

  36. Ross, S.M. Stochastic Processes (John Wiley & Sons, 1983).

  37. Cai, L., Friedman, N. & Xie, X.S. Stochastic protein expression in individual cells at the single-molecule level. Nature 440, 358–362 (2006).

    Article  CAS  Google Scholar 

  38. Hawley, D.K. & McClure, W.R. Mechanism of activation of transcription initiation from the λ PRM promoter. J. Mol. Biol. 157, 493–525 (1982).

    Article  CAS  Google Scholar 

  39. Tobias, J.W. & Varshavsky, A. Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae. J. Biol. Chem. 266, 12021–12028 (1991).

    CAS  PubMed  Google Scholar 

  40. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Little (University of Arizona), D. Finley (Harvard Medical School), R. Baker (John Curtin School of Medical Research) and the Yale University Coli Genetic Stock Center for strains and reagents. Funding provided by National Science Foundation CAREER Award 0746796 (to J.X.), March of Dimes Research grant 1-FY2011 (to J.X.), March of Dimes Basil O'Connor Starter Scholar Research Award 5-FY20 (to J.X.) and National Science Foundation Emerging Frontiers Award 0926287 (to J.W.).

Author information

Authors and Affiliations

Authors

Contributions

Z.H. and J.X. designed experiments. Z.H. and C.H. engineered strains and performed immunoblotting experiments. Z.H. acquired and analyzed fluorescence images. H.F., Z.H., B.H., J.X. and J.W. developed analytical methods. Z.H., H.F. and J.X. analyzed data. Z.H., J.X., H.F. and J.W. wrote the manuscript.

Corresponding authors

Correspondence to Jin Wang or Jie Xiao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figs 1–4, Supplementary Tables 1–5 and Supplementary Notes 1 and 2 (PDF 3229 kb)

Supplementary Movie 1

Timelapse fluorescence images for strain λWT (MOV 1422 kb)

Supplementary Movie 2

Timelapse fluorescence images for strain λr3 (MOV 2032 kb)

Supplementary Movie 3

Timelapse fluorescence images for strain λb (MOV 1457 kb)

Supplementary Movie 4

Timelapse fluorescence images for strain λ (MOV 1083 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hensel, Z., Feng, H., Han, B. et al. Stochastic expression dynamics of a transcription factor revealed by single-molecule noise analysis. Nat Struct Mol Biol 19, 797–802 (2012). https://doi.org/10.1038/nsmb.2336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing