Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of Mre11–Nbs1 complex yields insights into ataxia-telangiectasia–like disease mutations and DNA damage signaling

Abstract

The Mre11–Rad50–Nbs1 (MRN) complex tethers, processes and signals DNA double-strand breaks, promoting genomic stability. To understand the functional architecture of MRN, we determined the crystal structures of the Schizosaccharomyces pombe Mre11 dimeric catalytic domain alone and in complex with a fragment of Nbs1. Two Nbs1 subunits stretch around the outside of the nuclease domains of Mre11, with one subunit additionally bridging and locking the Mre11 dimer via a highly conserved asymmetrical binding motif. Our results show that Mre11 forms a flexible dimer and suggest that Nbs1 not only is a checkpoint adaptor but also functionally influences Mre11-Rad50. Clinical mutations in Mre11 are located along the Nbs1-interaction sites and weaken the Mre11-Nbs1 interaction. However, they differentially affect DNA repair and telomere maintenance in Saccharomyces cerevisiae, potentially providing insight into their different human disease pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of S. pombe apo Mre11cd and comparison with homologous Mre11 structures from Pyrococcus furiosus and Thermotoga maritima.
Figure 2: Structure of Nbs1mir–Mre11cd complex.
Figure 3: Structural basis for ATLD and NBS-like disease mutations.
Figure 4: Conformational impact of Nbs1 binding on Mre11 dimer configuration.
Figure 5: In vivo characterization of Mre11 latching loop–compromising mutations in S. cerevisiae.
Figure 6: Models for general architecture of eukaryotic MRN and MRN-dependent DNA DSB signaling.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Mills, K.D., Ferguson, D.O. & Alt, F.W. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev. 194, 77–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, K., Zhang, Y. & Lee, S.E. Saccharomyces cerevisiae ATM orthologue suppresses break-induced chromosome translocations. Nature 454, 543–546 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Hoeijmakers, J.H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Heyer, W.D., Ehmsen, K.T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mladenov, E. & Iliakis, G. Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways. Mutat. Res. 711, 61–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Harper, J.W. & Elledge, S.J. The DNA damage response: ten years after. Mol. Cell 28, 739–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Williams, G.J., Lees-Miller, S.P. & Tainer, J.A. Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst.) 9, 1299–1306 (2010).

    Article  CAS  Google Scholar 

  9. Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rahal, E.A. et al. ATM regulates Mre11-dependent DNA end-degradation and microhomology-mediated end joining. Cell Cycle 9, 2866–2877 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stracker, T.H. & Petrini, J.H. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 12, 90–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cejka, P. et al. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467, 112–116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faure, V., Coulon, S., Hardy, J. & Geli, V. Cdc13 and telomerase bind through different mechanisms at the lagging- and leading-strand telomeres. Mol. Cell 38, 842–852 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Rass, E. et al. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat. Struct. Mol. Biol. 16, 819–824 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Borde, V. The multiple roles of the Mre11 complex for meiotic recombination. Chromosome Res. 15, 551–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Hopfner, K.P. et al. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418, 562–566 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. de Jager, M. et al. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol. Cell 8, 1129–1135 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Paull, T.T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev. 13, 1276–1288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nicolette, M.L. et al. Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks. Nat. Struct. Mol. Biol. 17, 1478–1485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mimitou, E.P. & Symington, L.S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Sartori, A.A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E. & Ira, G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134, 981–994 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Neale, M.J., Pan, J. & Keeney, S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lloyd, J. et al. A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage. Cell 139, 100–111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Williams, R.S. et al. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139, 87–99 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stracker, T.H., Morales, M., Couto, S.S., Hussein, H. & Petrini, J.H. The carboxy terminus of NBS1 is required for induction of apoptosis by the MRE11 complex. Nature 447, 218–221 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Difilippantonio, S. et al. Distinct domains in Nbs1 regulate irradiation-induced checkpoints and apoptosis. J. Exp. Med. 204, 1003–1011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Falck, J., Coates, J. & Jackson, S.P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, J.H. & Paull, T.T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 551–554 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, J.H. & Paull, T.T. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304, 93–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Costanzo, V., Paull, T., Gottesman, M. & Gautier, J. Mre11 assembles linear DNA fragments into DNA damage signaling complexes. PLoS Biol. 2, E110 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dupré, A., Boyer-Chatenet, L. & Gautier, J. Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nat. Struct. Mol. Biol. 13, 451–457 (2006).

    Article  PubMed  Google Scholar 

  33. Yazdi, P.T. et al. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16, 571–582 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Falck, J., Petrini, J.H., Williams, B.R., Lukas, J. & Bartek, J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat. Genet. 30, 290–294 (2002).

    Article  PubMed  Google Scholar 

  35. Derheimer, F.A. & Kastan, M.B. Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett. 584, 3675–3681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taylor, A.M., Groom, A. & Byrd, P.J. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst.) 3, 1219–1225 (2004).

    Article  CAS  Google Scholar 

  37. Waltes, R. et al. Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am. J. Hum. Genet. 84, 605–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carney, J.P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Stewart, G.S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Uchisaka, N. et al. Two brothers with ataxia-telangiectasia-like disorder with lung adenocarcinoma. J. Pediatr. 155, 435–438 (2009).

    Article  PubMed  Google Scholar 

  41. Shull, E.R. et al. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev. 23, 171–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matsumoto, Y. et al. Two unrelated patients with MRE11A mutations and Nijmegen breakage syndrome-like severe microcephaly. DNA Repair (Amst.) 10, 314–321 (2011).

    Article  CAS  Google Scholar 

  43. Lammens, K. et al. The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair. Cell 145, 54–66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ueno, M. et al. Molecular characterization of the Schizosaccharomyces pombe nbs1+ gene involved in DNA repair and telomere maintenance. Mol. Cell. Biol. 23, 6553–6563 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fernet, M. et al. Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Hum. Mol. Genet. 14, 307–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Chamankhah, M., Fontanie, T. & Xiao, W. The Saccharomyces cerevisiae mre11(ts) allele confers a separation of DNA repair and telomere maintenance functions. Genetics 155, 569–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bressan, D.A., Olivares, H.A., Nelms, B.E. & Petrini, J.H. Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11. Genetics 150, 591–600 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Haber, J.E. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32, 561–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Tsukamoto, Y., Mitsuoka, C., Terasawa, M., Ogawa, H. & Ogawa, T. Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and meiotic recombination. Mol. Biol. Cell 16, 597–608 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boulton, S.J. & Jackson, S.P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819–1828 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van der Linden, E., Sanchez, H., Kinoshita, E., Kanaar, R. & Wyman, C. RAD50 and NBS1 form a stable complex functional in DNA binding and tethering. Nucleic Acids Res. 37, 1580–1588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park, Y.B., Chae, J., Kim, Y.C. & Cho, Y. Crystal structure of human Mre11: understanding tumorigenic mutations. Structure 19, 1591–1602 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Hopfner, K.P. et al. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105, 473–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Sabourin, M., Tuzon, C.T. & Zakian, V.A. Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae. Mol. Cell 27, 550–561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lim, H.S., Kim, J.S., Park, Y.B., Gwon, G.H. & Cho, Y. Crystal structure of the Mre11-Rad50-ATPγS complex: understanding the interplay between Mre11 and Rad50. Genes Dev. 25, 1091–1104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Möckel, C., Lammens, K., Schele, A. & Hopfner, K.P. ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex. Nucleic Acids Res. 40, 914–927 (2012).

    Article  PubMed  Google Scholar 

  57. Williams, G.J. et al. ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair. Nat. Struct. Mol. Biol. 18, 423–431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Williams, R.S. et al. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135, 97–109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shima, H., Suzuki, M. & Shinohara, M. Isolation and characterization of novel xrs2 mutations in Saccharomyces cerevisiae. Genetics 170, 71–85 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hendrickson, W.A., Horton, J.R. & LeMaster, D.M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. D'Amours, D. & Jackson, S.P. The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 15, 2238–2249 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Janke, R. et al. A truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae. Nucleic Acids Res. 38, 2302–2313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ye, Y. & Godzik, A. FATCAT: a web server for flexible structure comparison and structure similarity searching. Nucleic Acids Res. 32, W582–W585 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Petrini (Memorial Sloan-Kettering Cancer Center, New York) for his gift of antibodies to Mre11, Rad50 and Xrs2; members of the Hopfner lab for technical support and discussions; and M. Bennett, A. Rojowska, A. Kopetzki and C. Jung for help with experimentation. We thank the Max Planck Institute crystallization facility for crystallization trials, the staffs of the synchrotron beamlines for help with data collection and processing and SLS and ESRF for beamtime allowance. Research in the K.-P.H. lab was funded by grants from the German Research Council (SFBs 684, 646 and TR5), the German Excellence Initiative, European Commission (IP DNA repair), and US National Institutes of Health (U19AI83025). Research in the K.S. lab was funded by grants from the German Research Council (SFB 646) and the European Research Council (ERC; ERC Starting Grant, project 204522). Research in the S.P.J. lab is supported by grants from Cancer Research UK (C6/A11226), the European Research Council, the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement HEALTH-F2-2010-259893 and by core infrastructure funding from Cancer Research UK and the Wellcome Trust. S.P.J. receives his salary from the University of Cambridge, supplemented by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Contributions

C.B.S., I.G., B.C., H.F. and C.M. designed experiments; C.B.S., F.S. and A.S. cloned constructs and purified proteins; C.B.S. and F.S. crystallized proteins; C.B.S. and K.L. determined crystal structures; I.G., C.B.S., B.C. and H.F. carried out S. cerevisiae assays; C.B.S. did analytical size exclusion experiments; C.M. carried out nuclease activity assays; K.-P.H. and C.B.S. wrote the manuscript; K.L., I.G. and B.C. contributed to the writing and S.P.J., H.F. and C.M. revised the manuscript; K.-P.H., S.P.J. and K.S. supervised the research; K.-P.H. initiated the project and designed the research.

Corresponding author

Correspondence to Karl-Peter Hopfner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–3 and Supplementary Methods (PDF 6645 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiller, C., Lammens, K., Guerini, I. et al. Structure of Mre11–Nbs1 complex yields insights into ataxia-telangiectasia–like disease mutations and DNA damage signaling. Nat Struct Mol Biol 19, 693–700 (2012). https://doi.org/10.1038/nsmb.2323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing