Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The structure of the ASAP core complex reveals the existence of a Pinin-containing PSAP complex

Abstract

The ASAP complex interacts with the exon-junction complex (EJC), a messenger ribonucleoprotein complex involved in post-transcriptional regulation. The three ASAP subunits (Acinus, RNPS1 and SAP18) have been individually implicated in transcriptional regulation, pre-mRNA splicing and mRNA quality control. To shed light on the basis for and consequences of ASAP's interaction with the EJC, we have determined the 1.9-Å resolution structure of a eukaryotic ASAP core complex. The RNA-recognition motif of RNPS1 binds to a conserved motif of Acinus with a recognition mode similar to that observed in splicing U2AF proteins. The Acinus–RNPS1 platform recruits the ubiquitin-like domain of SAP18, forming a ternary complex that has both RNA- and protein-binding properties. Unexpectedly, our structural analysis identified an Acinus-like motif in Pinin, another EJC-associated splicing factor. We show that Pinin physically interacts with RNPS1 and SAP18, forming an alternative ternary complex, PSAP.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of the interacting domains of Acinus, RNPS1 and SAP18.
Figure 2: Structure of the conserved core of the ASAP complex.
Figure 3: Molecular recognition at the RRM domain of RNPS1.
Figure 4: Molecular recognition at the UBL domain of SAP18.
Figure 5: Hot spots for interaction on the surface of the ASAP core.
Figure 6: An RSB motif in Pinin: the PSAP complex.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Perales, R. & Bentley, D. “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178–191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moore, M.J. & Proudfoot, N.J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Le Hir, H. & Seraphin, B. EJCs at the heart of translational control. Cell 133, 213–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Wiegand, H.L., Lu, S. & Cullen, B.R. Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc. Natl. Acad. Sci. USA 100, 11327–11332 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nott, A., Le Hir, H. & Moore, M.J. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 18, 210–222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang, Y.-F., Imam, J.S. & Wilkinson, M.F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Isken, O. et al. Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 133, 314–327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hachet, O. & Ephrussi, A. Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 428, 959–963 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Roignant, J.Y. & Treisman, J.E. Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene. Cell 143, 238–250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ashton-Beaucage, D. et al. The exon junction complex controls the splicing of MAPK and other long intron-containing transcripts in Drosophila. Cell 143, 251–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12, 861–869 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bono, F., Ebert, J., Lorentzen, E. & Conti, E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126, 713–725 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Andersen, C.B.F. et al. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313, 1968–1972 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Chamieh, H., Ballut, L., Bonneau, F. & Le Hir, H. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat. Struct. Mol. Biol. 15, 85–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, C., Lin, R.-I., Lai, M.-C., Ouyang, P. & Tarn, W.-Y. Nuclear Pnn/DRS protein binds to spliced mRNPs and participates in mRNA processing and export via interaction with RNPS1. Mol. Cell. Biol. 23, 7363–7376 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tange, T.Ø., Shibuya, T., Jurica, M.S. & Moore, M.J. Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA 11, 1869–1883 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwerk, C. et al. ASAP, a novel protein complex involved in RNA processing and apoptosis. Mol. Cell. Biol. 23, 2981–2990 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89, 357–364 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Espinás, M.L. et al. The GAGA factor of Drosophila interacts with SAP18, a Sin3-associated polypeptide. EMBO Rep. 1, 253–259 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhu, W., Foehr, M., Jaynes, J.B. & Hanes, S.D. Drosophila SAP18, a member of the Sin3/Rpd3 histone deacetylase complex, interacts with Bicoid and inhibits its activity. Dev. Genes Evol. 211, 109–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Matyash, A., Singh, N., Hanes, S.D., Urlaub, H. & Jaeckle, H. SAP18 promotes Krüppel-dependent transcriptional repression by enhancer-specific histone deacetylation. J. Biol. Chem. 284, 3012–3020 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Singh, K.K. et al. Human SAP18 mediates assembly of a splicing regulatory multiprotein complex via its ubiquitin-like fold. RNA 16, 2442–2454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mayeda, A. et al. Purification and characterization of human RNPS1: a general activator of pre-mRNA splicing. EMBO J. 18, 4560–4570 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakashita, E., Tatsumi, S., Werner, D., Endo, H. & Mayeda, A. Human RNPS1 and its associated factors: a versatile alternative pre-mRNA splicing regulator in vivo. Mol. Cell. Biol. 24, 1174–1187 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Gehring, N.H. et al. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol. Cell 20, 65–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Long, J.C. & Caceres, J.F. The SR protein family of splicing factors: master regulators of gene expression. Biochem. J. 417, 15–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Sahara, S. et al. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401, 168–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Vucetic, Z. et al. Acinus-S′ represses RAR-regulated gene expression through interaction with the B-domain of RARs. Mol. Cell. Biol 28, 2549–2558 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McCallum, S.A. et al. Structure of SAP18: a ubiquitin fold in histone deacetylase complex assembly. Biochemistry 45, 11974–11982 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Oubridge, C., Ito, N., Evans, P.R., Teo, C.H. & Nagai, K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372, 432–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Kielkopf, C.L., Rodionova, N.A., Green, M.R. & Burley, S.K. A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Cell 106, 595–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Selenko, P. et al. Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP. Mol. Cell 11, 965–976 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Fribourg, S., Gatfield, D., Izaurralde, E. & Conti, E. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat. Struct. Biol. 10, 433–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Liker, E., Fernandez, E., Izaurralde, E. & Conti, E. The structure of the mRNA export factor TAP reveals a cis arrangement of a non-canonical RNP domain and an LRR domain. EMBO J. 19, 5587–5598 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cléry, A., Blatter, M. & Allain, F.H. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 18, 290–298 (2008).

    Article  PubMed  Google Scholar 

  38. Kadlec, J., Izaurralde, E. & Cusack, S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat. Struct. Mol. Biol. 11, 330–337 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Winget, J.M. & Mayor, T. The diversity of ubiquitin recognition: hot spots and varied specificity. Mol. Cell 38, 627–635 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Song, J., Zhang, Z., Hu, W. & Chen, Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem. 280, 40122–40129 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Weiergräber, O.H. et al. Ligand binding mode of GABAA receptor-associated protein. J. Mol. Biol. 381, 1320–1331 (2008).

    Article  PubMed  Google Scholar 

  42. Wang, P., Lou, P.-J., Leu, S. & Ouyang, P. Modulation of alternative pre-mRNA splicing in vivo by pinin. Biochem. Biophys. Res. Commun. 294, 448–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Costa, E. et al. Drosophila dSAP18 is a nuclear protein that associates with chromosomes and the nuclear matrix, and interacts with pinin, a protein factor involved in RNA splicing. Chromosome Res. 14, 515–526 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Hecker, C.M., Rabiller, M., Haglund, K., Bayer, P. & Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G. & Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 101, 14373–14378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kerscher, O. SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550–555 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mishra, S.K. et al. Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature 474, 173–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Joo, J.-H. et al. Pinin modulates expression of an intestinal homeobox gene, Cdx2, and plays an essential role for small intestinal morphogenesis. Dev. Biol 345, 191–203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saulière, J. et al. The exon junction complex differentially marks spliced junctions. Nat. Struct. Mol. Biol. 17, 1269–1271 (2010).

    Article  PubMed  Google Scholar 

  50. Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M. & Barton, G.J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529–W533.

  52. Crooks, G.E., Hon, G., Chandonia, J.-M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Collaborative Computational Project N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  55. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Morris, R.J., Perrakis, A. & Lamzin, V.S. ARP/wARP's model-building algorithms. I. The main chain. Acta Crystallogr. D Biol. Crystallogr. 58, 968–975 (2002).

    Article  PubMed  Google Scholar 

  57. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Royer, C.A. Improvements in the numerical analysis of thermodynamic data from biomolecular complexes. Anal. Biochem. 210, 91–97 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Basquin, K. Valer-Saldaña and S. Pleyer at the Max Planck Institute Biochemistry Crystallization Facility; the Max Planck Institute Biochemistry Core Facility for mass spectrometry; F. Bonneau for help with immunoprecipitation and RNA-binding assays; M. Jinek (University of California, Berkeley) for the HA and HA-Flag vectors ; M. Rode and C. Tommasetto for baculovirus expression; J. Söding for help with the bioinformatic search of RSB-containing proteins; D.L. Makino with help on data collection; and A. Pauluhn and the staff at the Swiss Light Source synchrotron. We also would like to thank the members of our labs for discussions and for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions to this work were as follows: purification, structure determination, biochemical assays and computational analysis were done by A.G.M.; ASAP limited proteolysis, crystallization and data collection by J.E.; fluorescence anisotropy shown in Figures 3 and 4 by C.B.; and the pull-down assay shown in Supplementary Figure 1 was done by H.L.H. E.C. supervised the project. E.C. and A.G.M. wrote the paper.

Corresponding author

Correspondence to Elena Conti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Methods (PDF 7402 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murachelli, A., Ebert, J., Basquin, C. et al. The structure of the ASAP core complex reveals the existence of a Pinin-containing PSAP complex. Nat Struct Mol Biol 19, 378–386 (2012). https://doi.org/10.1038/nsmb.2242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing