Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation

Abstract

Poly-ADP-ribosylation is a post-translational modification catalyzed by PARP enzymes with roles in transcription and chromatin biology. Here we show that distinct macrodomains, including those of histone macroH2A1.1, are recruited to sites of PARP1 activation induced by laser-generated DNA damage. Chemical PARP1 inhibitors, PARP1 knockdown and mutation of ADP-ribose–binding residues in macroH2A1.1 abrogate macrodomain recruitment. Notably, histone macroH2A1.1 senses PARP1 activation, transiently compacts chromatin, reduces the recruitment of DNA damage factor Ku70–Ku80 and alters γ-H2AX patterns, whereas the splice variant macroH2A1.2, which is deficient in poly-ADP-ribose binding, does not mediate chromatin rearrangements upon PARP1 activation. The structure of the macroH2A1.1 macrodomain in complex with ADP-ribose establishes a poly-ADP-ribose cap-binding function and reveals conformational changes in the macrodomain upon ligand binding. We thus identify macrodomains as modules that directly sense PARP activation in vivo and establish macroH2A histones as dynamic regulators of chromatin plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macrodomain-containing proteins recruit to sites of PARP1 activity in vivo.
Figure 2: PAR is the direct target of histone macroH2A1.1's macrodomain.
Figure 3: The macroH2A1.1 macrodomain is recruited to in vivo PARylation sites.
Figure 4: MacroH2A1.1 compacts chromatin and alters H2AX phosphorylation.
Figure 5: Conformational changes in the macroH2A.1 macrodomain in response to ADPR binding.
Figure 6: Macrodomains function as receptors of cellular PARP1 activation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Woodcock, C.L. Chromatin architecture. Curr. Opin. Struct. Biol. 16, 213–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Hassa, P.O., Haenni, S.S., Elser, M. & Hottiger, M.O. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol. Mol. Biol. Rev. 70, 789–829 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hassa, P.O. & Hottiger, M.O. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front. Biosci. 13, 3046–3082 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. D'Amours, D., Desnoyers, S., D'Silva, I. & Poirier, G.G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342, 249–268 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kun, E., Kirsten, E., Mendeleyev, J. & Ordahl, C.P. Regulation of the enzymatic catalysis of poly(ADP-ribose) polymerase by dsDNA, polyamines, Mg2+, Ca2+, histones H1 and H3, and ATP. Biochemistry 43, 210–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Gagné, J.P. et al. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 36, 6959–6976 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ladurner, A.G. Inactivating chromosomes: a macro domain that minimizes transcription. Mol. Cell 12, 1–3 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Ouararhni, K. et al. The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev. 20, 3324–3336 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nusinow, D.A. et al. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome. J. Biol. Chem. 282, 12851–12859 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Karras, G.I. et al. The macro domain is an ADP-ribose binding module. EMBO J. 24, 1911–1920 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kirsten, E., Kun, E., Mendeleyev, J. & Ordahl, C.P. Activity assays for poly-ADP ribose polymerase. Methods Mol. Biol. 287, 137–149 (2004).

    CAS  PubMed  Google Scholar 

  12. Fahrer, J., Kranaster, R., Altmeyer, M., Marx, A. & Bürkle, A. Quantitative analysis of the binding affinity of poly(ADP-ribose) to specific binding proteins as a function of chain length. Nucleic Acids Res. 35, e143 (2007).

  13. Sporn, J. et al. MacroH2A1.1 predicts the risk of lung cancer recurrence. Oncogene advance online publication, doi: 10.1038/onc.2009.26 (3 August 2009).

    Article  CAS  PubMed  Google Scholar 

  14. Gottschalk, A.J. et al. Poly-(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc. Natl. Acad. Sci. USA advance online publication, doi: 10.1073/pnas.0906920106 (6 August 2009).

  15. Heo, K. et al. FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol. Cell 30, 86–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Kustatscher, G., Hothorn, M., Pugieux, C., Scheffzek, K. & Ladurner, A.G. Splicing regulates NAD metabolite binding to histone macroH2A. Nat. Struct. Mol. Biol. 12, 624–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Hassa, P.O., Covic, M., Hasan, S., Imhof, R. & Hottiger, M.O. The enzymatic and DNA binding activity of PARP-1 are not required for NF-κB coactivator function. J. Biol. Chem. 276, 45588–45597 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Altmeyer, M., Messner, S., Hassa, P.O., Fey, M. & Hottiger, M.O. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res. 37, 3723–3738 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, M.Y., Mauro, S., Gevry, N., Lis, J.T. & Kraus, W.L. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119, 803–814 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Krishnakumar, R. et al. Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 319, 819–821 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Rouleau, M., Aubin, R.A. & Poirier, G.G. Poly(ADP-ribosyl)ated chromatin domains: access granted. J. Cell Sci. 117, 815–825 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ju, B.G. et al. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Pavri, R. et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125, 703–717 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Cohen-Armon, M. et al. DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol. Cell 25, 297–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Homburg, S. et al. A fast signal-induced activation of Poly(ADP-ribose) polymerase: a novel downstream target of phospholipase c. J. Cell Biol. 150, 293–307 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haenni, S.S. et al. Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation. Int. J. Biochem. Cell Biol. 40, 2274–2283 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Wong, R.H.F. et al. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 136, 1056–1072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Changolkar, L.N. et al. Developmental changes in histone macroH2A1-mediated gene regulation. Mol. Cell. Biol. 27, 2758–2764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pehrson, J.R., Costanzi, C. & Dharia, C. Developmental and tissue expression patterns of histone macroH2A1 subtypes. J. Cell. Biochem. 65, 107–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Costanzi, C. & Pehrson, J.R. MACROH2A2, a new member of the MACROH2A core histone family. J. Biol. Chem. 276, 21776–21784 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Hassa, P.O. et al. Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-κB-dependent transcription. J. Biol. Chem. 280, 40450–40464 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Pétrilli, V. et al. Noncleavable poly(ADP-ribose) polymerase-1 regulates the inflammation response in mice. J. Clin. Invest. 114, 1072–1081 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nakatani, Y. & Ogryzko, V. Immunoaffinity purification of mammalian protein complexes. Methods Enzymol. 370, 430–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Colombelli, J., Grill, S.W. & Stelzer, E.H.K. Ultraviolet diffraction limited nanosurgery of live biological tissues. Rev. Sci. Instrum. 75, 472 (2004).

    Article  CAS  Google Scholar 

  35. Thévenaz, P., Ruttimann, U.E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    Article  PubMed  Google Scholar 

  36. Colombelli, J. et al. A correlative light and electron microscopy method based on laser micropatterning and etching. in Membrane Trafficking Vol. 457 (ed. Vancura, A.) 203–213 (Human Press, Clifton, NJ, 2008).

    Chapter  Google Scholar 

  37. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  38. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  PubMed  Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  40. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Fenn, T.D., Ringe, D. & Petsko, G.A. POVScript+: a program for model and data visualization using persistence of vision ray-tracing. J. Appl. Crystallogr. 36, 944–947 (2003).

    Article  CAS  Google Scholar 

  42. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Gossen (Max-Delbrück-Centrum for Molecular Medicine) for the HeLa TetOn system, S. Jackson (The Gurdon Institute) and KuDos Pharmaceuticals for purified DNA-PK holo-complex, A. Cohen and H. Stunnenberg for MS, V. Rybin in the European Molecular Biology Laboratory (EMBL) Protein Expression and Purification Facility, V. Benes and the EMBL GeneCore Facility, Olympus Europe for supporting EMBL's Advanced Light Microscopy Facility, J. Ellenberg for discussion of chromatin compaction and A. Akhtar, C. Häring, J. Conaway, I. Mattaj, V. Sartorelli and C. Wu for advice. This work was supported by funding from EMBL, EU Network of Excellence “The Epigenome”, the Peter and Traudl Engelhorn Stiftung (M.H.), EU Marie Curie Research Training Network “Chromatin Plasticity” and the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Contributions

G.T. conducted imaging assays; S.T. conducted macrodomain biochemistry; P.O.H. identified PAR as in vitro ligand for macrodomains; M.H. conducted crystallography; G.K. purified proteins interacting with nucleosomal macroH2A; J.C. and E.H.K.S. provided technical support with UV cutting; P.O.H., M.A. and M.O.H. provided baculovirus PARP1 and PARP2 and PARP1 shRNAs; P.O.H. and B.N. provided assistance with molecular biology; all authors designed the project; A.G.L. supervised the project; G.T., S.T., P.O.H., K.S. and A.G.L. wrote the manuscript.

Corresponding author

Correspondence to Andreas G Ladurner.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1 and 2 (PDF 3841 kb)

Supplementary Movie 1

Recruitment kinetics of the archaebacterial Af1521 macrodomain to microirradiated DNA sites in vivo. (MOV 3396 kb)

Supplementary Movie 2

Recruitment kinetics of the histone macroH2A1.1 macrodomain (left) and PARP1 (middle) to micro-irradiated DNA sites in vivo. The right panel shows the merged channels. (MOV 5541 kb)

Supplementary Movie 3

Recruitment kinetics of the human macroD2 macrodomain to micro-irradiated DNA sites in vivo. (MOV 9891 kb)

Supplementary Movie 4

Comparison of the recruitment levels for fluorescently-tagged PARP1 (left) with fluorescently-tagged PARP2 (right) at a laser micro-irradiation site in HeLa cells. (MOV 8784 kb)

Supplementary Movie 5

Confocal stacks showing the enrichment of Hoechst staining at laser micro-irradiation site in HeLa cells expressing the tagged macroH2A1.1 histone variant. The movie shows two nuclei in each panel. Hoechst staining (left), macroH2A1.1 antibody staining (middle) and phosphorylated H2AX histone staining (right). (MOV 1041 kb)

Supplementary Movie 6

Confocal stacks showing the enrichment of Hoechst staining at a laser micro-irradiation site in HeLa cells that do not express the macroH2A1.1 histone transgene. Hoechst staining (left) and phosphorylated H2AX histone staining (right). (MOV 984 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timinszky, G., Till, S., Hassa, P. et al. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16, 923–929 (2009). https://doi.org/10.1038/nsmb.1664

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing